4

Some techniques

for building Mathematical
intelligent tutoring
systems

TAK-WAI CHAN

National Central University, Taiwan, Republic of China.

4.1 Introduction

This chapter discusses some techniques in building an intelligent
tutoring system called Integration-Kid. Integration-Kid is a learning
companion systems (LCS) (Chan & Baskin, 1988, 1990; Chan, 1991) in
the domain of integral calculus. In the learning environment of a
learning companion system, there are three agents involved, namely,
the human student, the computer learning companion, and the computer
teacher. As implied by its name, the role of the computer learning
companion is to act as a learning companion for the student. In this
chapter, we discuss a production system which is used to simulate
different agents' interactions via a common blackboard. Then we discuss
how to model domain knowledge; in particular, we describe a term
rewriting system which is the basis of the problem solver for both the
companion and the teacher. We next discuss how the system handles
students' bugs. Then an algorithm which parses mathematical
expressions into readable two dimensional expressions is given. Finally,
we provide a brief conclusion.

In designing Integration-Kid, it is natural to start by
considering the original LCS environment as shown in Figure 1, From
the figure, there are two major issues: representation of each agent
(denoted by the ellipses) and the interactions among them (denoted by

the double arrow lines).

Some Techniques in Building Mathematical ITSs 53

Computer
Teacher

Computer
Companion

ey

Human
Student

Figure 1 - Learning Companion System Environment

With the above intuition, we represent the three agents separately
in the system. Each agent is a set of rules of behaviour modelling the
behaviour of the agent. The three agents communicate via a
blackboard. A simple agent scheduler controls the system when the
agents look at the blackboard and execute. The output of an agent
consists of the utterances on its own window in the interface. Since there
is no student model in Integration-Kid, the student agent only consists of
those rules that interpret the student's input and put it on the
blackboard for the other two agents to react.

4.2 Overview of Production and Blackboard

Systems
We use production system and blackboard system as a part of our
building block for Integration-Kid. They are two common knowledge-
based system architectures. We first give an overview of production
systems and blackboard systems and their uses in ITS. .
Production systems (Forgy, 1981), a type of pattern-directed
inference systems, is a class of programming languages used primarily
for applications in the areas of artificial intelligence, expert systems,
and cognitive psychology. A production system has two kinds of
memory: a collection of production rules (also known as productions)
called the production mmemory, and a set of data called the working
memory. A production rule can be perceived as a condition-action,
situation-action, or cause-effect procedural element and the data in the
working memory represents a situation at a certain point of time. An
inference engine looks at the current situation and tests which
production rules are appropriate and decides which action to take.
Taking this action will then cause the situation or data in working

maemanrv fn rhanoe and. aomatimes. ran alter the nrodichon memorv

54 Mathematical Intelligent Learning Environments

satisfied, then the rule's action (or right-hand-side part) may be
executed, and the rule is said to have fired. Production systems
resemble closely how an agent looks and reacts to a situation, that is, it
exhibits some kind of psychological validity. For those readers
interested in detail, consult one of the best-known production system
language, OPS5, which is nicely documented in a book by Brownston et

al. (1985).
The basic flow of control in a production system is called the

recognise-act cycle (Figure 2).

1. [Recognise] Evaluate the conditions of rules and determine
which are satisfied given the current data in the working
memory. _

2. [Conflict Resolution] Select one rule with a satisfied condition.
If no rules have satisfied conditions, then halt the system.

3. [Act] Execute the action part of the selected rule.

4. Gotostepl.

| Figure 2 - Recognise-Act Cycle

Each rule's condition is a description of the states in which the rule
is applicable; the condition is satisfied when there is information in
the working memory that the production can process. When the system
performs the recognise process, it is in effect searching for rules that
know how to process the data in the working memory. When those rules
are found, one rule will be selected (conflict resolution) and its action
part executes. Data in the working memory will then be changed and

Some Techniques in Building Mathematical ITSs 55

common strategy is to use some preference rules to determine exactly one
rule to fire. After the rule has been fired, the set of eligible rules to be
fired is recomputed, so that rules that are no longer eligible to fire are
removed from the set, and rules that just become eligible to fire are
added to it.

Blackboard architectures, first introduced in the Hearsay-II speech
understanding system from 1971 to 1976 (Erman et al., 1980), have
become popular for knowledge-based applications. The blackboard
paradigm is rather simple to describe (Figure 3). It consists of a set of
knowledge sources, a global data structure called the blackboard, and a
control component called the scheduler. A knowledge source is usually
"larger" than a rule and functions independently from others, thus
resembling a single expert. It can be a procedure, a production system or
even a blackboard system itself. The scheduler, among the qualified
knowledge sources, selects one and executes it, thereby changing the

blackboard.
[Scheduler)

Blackboard

J e
0

DR ED

Figure 3 - Schematic of a Blackboard System

In the subsequent cycle, the change in the blackboard triggers
another qualified set of knowledge sources and so on. While the
blackboard model is reminiscent of the production system, it does not
specify a methodology for design and implementation (Nii, 1986).
Historically, most blackboard-based systems have been built according
to the criteria that appeared most appropriate for the particular
application (Corkill et al., 1986). The blackboard approach may be
viewed as a philosophy or a set of guidelines rather than as a carefully
specified process. Some blackboard systems emphasise the control
process, e.g., BB1 (Hayes-Roth, 1985), and some have complicated
insertion/retrieval strategies for the blackboard data, e.g. Hearsay III,

e n I . T ERatal Ry

56 Mathematical Intelligent Learning Environmenis

GUIDON and CMU tutors discussed below are two important ITS

researches which adopt production systems as the framework for

building ITS. Their experiences show that production rules are an
appropriate representation for coding teaching knowledge. GUIDON is
the earliest work using production rules for teaching. Its domain and
tutorial knowledge are both represented separately by MYCIN type

production rules. The tutorial knowledge is stated explicitly in the

form of 200 production rules, which include guiding the dialogue,
presenting diagnostic rules, constructing a student model, and responding
to the student's initiative. GUIDON demonstrates that teaching
knowledge can be codified in production rules and built incrementally
and that the framework of tutoring rules can be organised into discourse
procedures (Clancey, 1979).

CMU Tutors use the production system GRAPES. GRAPES is a
modular representation language to encode cognitive processes.
Different from other production systems, production rules in GRAPES
(Anderson et al., 1984) are strictly interpreted within a hierarchical
goal structure (AND/OR graph). In one of their tutors, the LISP tutor,
there are 325 correct rules and 475 mal-rules. After numerous problem
solving protocols by human students have been analysed, the number of
mal-rules has increased to over 1,200 (Anderson & Skwarecki, 1986).
Experience of CMU Tutors indicates that the development of ITS can
and should be an empirical experiment with a large amount of
revisions. ‘ :

Blackboard-based architectures for instructional planning have
been adopted by a few ITS researchers (MacMillan & Sleeman, 1987;
Murray, 1989, 1990). They focus on how to generate dynamically,
execute, and revise instructional plans. MacMillan et al. (1988) point
out that the process of understanding instructional planning and the
requirements for machine instructional planners are still at an early
stage of research. They note that better understanding of how teachers
plan and make decisions during instruction will be vital for the complex
process of machine-based instructional planning.

4.3 LPS — A Language to Simulate Agents'

Behaviour

In Integration-Kid, the blackboard is a collection of data, representing
the current situation. When an agent looks at the current situation, rules
of behaviour of that agent will be tested to see which one is
appropriate to execute. Such rules of behaviour are represented as
production rules. Thus an agent is a simple production system. If all the
data on the left-hand side (LHS) of a rule is on the blackboard, the
sequence of actions on the right-hand side (RFIS) will be executed. The

Some Techniques in Building Mathematical ITSs 57

protocols of activities discussed in the last chapter are all constructed
with such rules of behaviour. .

The behaviour of a human student is driven by his/her own
intelligence; for the teacher and the companion, their general
communicative behaviour in learning is supported by their domain
knowledge. Their problem solving abilities, part of their domain
knowledge, are modelled by the problem solver and are called by the
RHS of the rules of behaviour. This problem-solving ability can be
viewed as part of an agent's behaviour. For the student agent, apart
from those rules that interpret the student's input, there are rules that
allow the student to control the system at his own pace. Some examples
are referencing an old problem or the table of basic rules of integration,
editing a sequence of mathematical expressions, or exploring further
details of certain points from the teacher's or the companion's
utterances by some reference facilities provided in the interface. Some
sub-programs such as editor facility, reference facility, utterance
processor, syntax checker, problem solver etc., support the rules of
behaviour of different agents. Organisation of these rules of behaviour
through inheritance and the scheduling of a piece of learning activity
which we call an episode is via a 'curriculum tree' architecture (Chan,
1992a).

The production system implemented in Integration-Kid is called
LPS. LPS is object-oriented. It has simple syntax and a simple working
mechanism (by adopting the simplest conflict resolution strategy).
Besides, it uses different rule types to support changes of memories.

LPS is implemented as object-oriented, a new production system can
easily be created as an instance of the object. For example,

(setq *scheduler* (make-instance 'lps :name 'SCHEDULER))

defines a production system, *scheduler* (a global variable), which is
an instance of an LPS object with the name SCHEDULER. Four other
production systems used in Integration-Kid are:

(setq *bbs* (make-instance 'lps :name ’BBS})
(setq *student* (make~instance 'lps :name 'STUDENT :parent-ps

bhs))

(setq *teacher* (make-instance 'lps :name 'TEACHER :parent-ps
hhg)) '

{setq *companion#* (make-instance ‘lps :iname 'COMPANION
:parent-ps *bhs*))

The production systems, *student®, *teacher*, and *companion®
simulate the behaviour of the agents, the student, the teacher, and the
companion, respectively. We shall call such a production system an
agent production system or just an agent. '

58 Mathematical Intelligent Learning Envircnments

A production system may have a parent production system. The
agent production systems all have a parent production system *bbs*. If 2
production system has a parent, running the production system will use
both its working memory as well as its parent's, that is, the union of its
working memory and its parent's. For example, when running the
production system *student*, the actual working memory used will be
the union of the working memory of *student* and *bbs*.

A parent will not see any of its child's working memory while a
child will see all of its parent's working memory. One way to view this
design is: suppose there is a large set of data that a set of rules will be
looking at. If a subset of such data will be only interested in a subset of
those rules while the whole set of data will be interested in the rest of
the rules, then we may factor out the subset of data with its interested
rules to be a parent production system. The additional work is to control
the decision when to run a parent or its children. -

However, Integration-Kid uses a simpler relationship of the set of
production systems. The working memory of the agent production
systems is empty. The production memory of the *bbs* is also empty.
The system will not run *bbs*. Thus the agent production systems are
essentially three sets of rules while *bbs* is a common working memory
shared by three agents. Thus,

{assert! *bbs* (problem ($ (sin (2 * x)) d x)))

(discussed further below) will assert the datum (problem ($ (sin (2 * x)) d
X)) in the common working memory *bbs* and

{rule! *teacher*

{teacher check student-substitution)
{student substitution ?stu-subst)
{teacher substitutions ?tea-substs)
-
ecode for checking student’'s chosen substitution
)

is a rule of the agent *teacher”.

4.3.1 Conflict Resolution in LPS

At the recognise part of running LPS, if there is no rule eligible to fire,
then the LPS will halt. If only one rule is eligible to fire, then it will
fire that rule. When more than one rule is eligible to fire, we could
have them all fire in parallel by updating copies of working memory,
or we could use some preference strategies to decide which rule to fire.
In LPS, we simply choose the first eligible rule in the recognise part to
fire. This idea is inspired by the simple matching procedure of the
language Prolog. Matching of a pattern in Prolog is a linear search
(from top to bottom) of the sequence of Prolog rules and facts until there

Some Techniques in Building Mathematicai ITSs 59

and facts in the order decided by the programmer. In order to write a
Prolog program, the user has to know such a matching process.
Similarly, in order to use LPS, the user has to know its simple conflict
resolution strategy. A rule that appears earlier in the production
memory will have a higher priority to fire than one that appears
later. An immediate advantage is that this strategy essentially needs
no effort for conflict resolution. Hence, conflict resolution is determined
when the rules are written rather than when the system is running. An
immediate problem of this strategy is that after a rule has fired, if the
data in the working memory that triggered the rule has not been
changed and that rule remains in the production memory after firing,
and no new rule is added in the production memory before it, then this
rule will fire again and thus an infinite loop occurs. This problem will
be discussed further when we describe the different rule types in LPS.

4.3.2 Representation of Data in Working Memory of LPS
Data in the working memory are stored as a linear list. Thus, matching
with triggers of rules is a linear search. It could be stored in a
discrimination net to enhance the search. However, with the
curriculum tree architecture, most of the time the number of data in the
working memory is less than 12, a very small number which will not
affect the efficiency of the system even using a linear list. Data in the
working memory looks like this:

{(student useful substitution}
(student suspicious)
{companicn not useful alternative).

This data describes that the student is using a proper substitution in
using the substitution method but he is now suspicious about the
substitution he has picked. Unfortunately, the companion's suggested
alternative of substitution at this point is not a useful one. Notice that
such data of the student and the companion form a part of the current
learning situation, They are all represented in *bbs*.

While the above data mainly describes the status of agents, there
is other data needed for recording and passing to the action part of the
rules to process when running. For example:

{problem (5 (sin (2 * x)) d x)
{student substitution (2 * x)).

Data in the working memory may also be atoms, for example:
more

2z,

Storing data will either call a macro assert! or a function assertf!.

60 Mathematical Intelligent Learning Environments

(assert! *bbs* (problem ($ (sin (2 * x)) 4 x})}

will assert the datum (problem ($ (sin (2 * x}) d x)) to the common
working memory *bbs* and

{assertf! *hhs* * (student substitution, student -
substitution)))

will evaluate the student-substitution which is (2 * x) and assert the
datum (student substitution (2 * x)} to the common working memory.

4.3.3 Representation of Rules in LPS

Syntactically, a rule in LPS consists of several components: a rule type
that states what type of rule is being used. There are four rule types
(discussed below); the LPS instance, for example, *teacher®; a list of
triggers that represents the conditions that must all be true in order for
the rule to fire; and an action that represents what happens when the
rule fires. Here is a rule:

{rule! *teacher*

{teacher check student substitution)

{student substitution ?stu-subst)
{teacher substitutions ?tea-substs}

-
(delete! *bbs* (teacher check student substitution))
{if (member 7stu—subst ?tea-substs :test #'equal)
{assert! *bbs* (student good substitution))
(assert! *bbs* (student bad substitution})))

The list of triggers, which is referred to as the LHS of the rule, are
patterns, with variables indicated by symbols whose first character is
"2 The action, which is referred to as the RHS of the rule, is a piece of
Lisp code that will be executed when the rule fires. In running LPS, rules
will not be added to the production memory, though possible to do, but
sometimes they will be deleted from the production memory.

4.3.4 Rule Types in LPS

As mentioned above, after a rule has fired, if that rule does not change
the working memory or the production memory, then that rule will fire
again and an infinite loop occurs. Many production systems use the
strategy of refraction where the data in the working memory that
triggers a rule to fire is recorded by a time tag. LPS does not use this
method. Which rule will fire next depends on what has changed in
both memories. The trade-off is: refraction is automatic while LPS is
more efficient because of deletion of data and rules in the memories.
Dula krmae in T PG ic a faatire fn enhance such change.

Some Techniques in Building Mathematical ITSs 61

The other two reasons to have different rule types in LPS are:
(1) it is a short-hand to change the memories; and, (2) because of the
change, it increases the efficiency of the matching process in subsequent
running,.
There are four types of rules in LPS:

1. Rulel: The previous rule (in Section 2.3) example belongs to this
type. A rule of this type will remain in the production memory
after firing. Rules will not be added to the production memory.
Data in the working memory may be changed but have to be
specified by the user at the RHS of the rule. In the example,
the datum (teacher check student substitution) is specified to be
deleted from the working memory when the rule fires so that
the same rule will not fire again.

2. Once-Rulel: An example of this rile:

{once-rule! *teacher*
(problem ?p)
-
(assertf! *bbs* ° (integrand , (§ ?P}}))
This rule will fire once and be deleted from the production memory.

(3) Bridge-Rulel: An example of this rule:

(bridge-rule! *gtudent*
(student edit substitution)
->
code for student to edit a substitution expression)

This rule remains in the production memory after firing. However,
all data that trigger the rule will be deleted from the working memory
automatically. In this example, the datum, (student edit substitution),
is removed from the working memory after firing.

(4) Once-Bridge-Rule!: An example of this rule:

(once-bridge-rule! *teacher*

more

2

-)
code for the teacher telling both learners something
(assert! *bbs* 3))

This rule will be deleted as well as the triggers more and 2 after
firing,
‘The use of the word 'bridge' is adopted from a Chinese saying:

| JUIS OISR PRI |

62 Mathematical Intelligent Learning Environments

once-bridge-rules are usually used in situations where the teacher
explains a concept or format of activities, or demonstrates an example
to the learners, Rules and bridge-rules, on the other hand, are used in
situations that may re-occur again — some sort of looping. One may
notice that while we would like to use once-rules or once-bridge-rules in
certain episodic situations, for example, a rule that tells the students
what is the current problem, such rules may be reused again in similar
episodes. That problem is solved by adopting the curriculum tree
architecture in which rules that will be used in similar episodes are
inherited from the upper level of the tree. So those rules will come back
again when switching to the next similar episode.

4.4 Modelling of Domain Knowledge
While the companion's conversation with other agents prescribed by
the rules of behaviour simulates different protocols of activities, the
companion's problem solving behaviour forms a basis of his interaction
with others. First, the companion possesses certain background
knowledge, such as simplification of algebraic expressions and
differentiation. Presumably, he has no trouble with such knowledge.
After the teacher introduces the basic concepts and demonstrates some
simple examples, the companion acquires a set of basic rules of
integration. These basic rules of integration are described as term
rewriting rules (discuss below). However, this set of rules is imperfect.
There are incorrect and missing rules. They will be fine tuned when the
companion solves problems independently with the student and reveals
problems with the rules. When learning new techniques such as the
substitution method, the companion acquires procedures which
incorporate the basic rules and his background knowledge such as
differentiation. With support from the teacher, both the companion
and the student have no trouble applying these procedures. However,
successful use of such techniques hinges on the right choice of a sub-
expression for the integrand, a choice which is largely heuristic in
nature. Now, instead of generating and testing all possible candidate
sub-expressions for each problem as other mathematical software does,
the companion will use a set of plausible candidates as a base to hold
conversation with the student via the protocol of activities. For
complex problems such as the miscellaneous problems, such a list of
candidates is not sufficient to represent the particulars of a problem and
we use a situation map (discussed later in this chapter) which lays out
such candidates as well as detailed situations in solving the particular
problems.

As a summary, the companion first acquires a set of basic rules of
integration which is fine-tuned as he uses it. Later, he learns advanced
tnohmimiac which incarnarate the rules and some background

Some Techniques in Building Mathematical [TSs 63

apply, the companion uses an assigned.set of candidates for each
problem. Finally, for complex problems, a richer representation which
includes both candidates and the detail of each situation is set for the
companion for each problem.

For teacher, his problem solver is the same as that of the
companion's, except at the outset, the set of rules of integration is
complete and sound. Also, the teacher adopts the same list of
candidates and the situation map used by the companion (Figure 4).
This is the case because some knowledge encoded in the the list of
candidates or the situation map is for the teacher. Furthermore, the
rules of behaviour of the companion and the teacher defining the
protocol reason differently on the list of candidates or situation map.

Situation
Map ‘

Companion
Integration

Integration

List of
Candidates
Figure 4 - Modelling Domain Knowledge of Companion and
Teacher

It is interesting to note that, at the later stages, the teacher needs
to rely on a given set of candidates or the situation map in order to
monitor the learning activities. However, having the teacher
completely acquire the knowledge is not our purpose. We can write code
for the teacher to generate such candidates to get the answer. But that
is not enough to support interaction with the learners.

4.4.1 Term Rewriting System as the Basic Problem Solver

We adopt procedures to solve complex problems; for example, we use a
procedure that substitutes the. substitution expression back into the
integral at the last step of applying the substitution method to a
problem. However, the basic building blocks of the problem solver can
be conceived of as a set of term rewriting rules. In solving simple
integration problems, it can be viewed as a continuous process of
changing the given mathematical expression (rewriting sub-terms of
the expression) until there is no integral sign. Apart from solving
cimnle inteoration nroblems. backeround knowledge such as

64 Mathematical Intelligent Learning Environments

represented as a term rewriting system. Our term rewriting system
basically consists of two components: the current expression and a set of
term rewriting rules. A term rewriting rule for the teacher is shown as
follows:

{rrule *tea-ele-rs*
(§ (?x ~ n} d 2x)
:name "Rule 1"

svar ?int
:test (numberp ?n) (not (= ?n -1}))
->

(add-binding *tea-ele-rs* ?n+l (1+ n))
(subst! *tea-ele-ra* ((?x ~ n+l) / ?n+l) zint))

Similar to a production rule, a term rewriting rule consists of a LHS
and a RHS. In the above term rewriting rule, ($ (2x * 7n) d ?x} is the sub-
expression. ?x and ?n are two variables that match any expressions.
There is an attribute of the LHS, :name, for the name of the rule.
Another attribute, :var, is a variable which denotes the sub-expression
of the current expression that matches (§ (?x * n) d ?x). After
successfully matching the sub-expression of the current expression, the
list of predicates will test further constraints on the bindings. In the
above rule, it will check whether 7n is a number and whether number is
not -1. If the test passes, then, the RHS in the above rule will do two
things: (1) (add-binding *tea-ele-rs* 7n+1 (1+ ?n)) assigns variable
n+1 to be 1 + 7n and finally (2) substitutes the matched sub-expression
of the current expression by ((?x » ?n+1) / ?n+1). Below is a rule the
companion initially acquires. Notice that this is an erroneous rule in
which the companion forgets to check the index of ?x (if the index is -1,
the rule should not apply), a common mistake by a student.

{rrule *com-ele-rs*
(& (% ~ 7n) d %)
name "Rule 1

tvar ?int :
rtest (numberp ?n)
4

{add-binding *com-ele-rs* ?n+l {1+ ?n})
(subst! *com—ele-rs* ((2x ~ 7n+l) / ?n+l} 2int))

Running a term rewriting system simply tests every term rewriting
rule from the rule base. Whenever a rule is matched, the current sub-
expression is rewritten. As can be seen, our term rewriting rules are close
production rules. In a term rewriting system, there is only one datum,
the current expression, in the working memory. Also, the action of RHS
of a rewriting rule is only to change the current expression. Thus, the
term rewriting system's function is more particular but simpler than a

Some Techniques in Building Mathematical ITSs 65

Learners Study
the Current Problem Situation

The Companion Collects
All Unattempted Actions

The Companion, Proposes

first Unattemped Action
L. ction is to Back Up to
Action is to Declare the Previous =%l::robltlz)m
that the Problem is - Situation
se
Done The Student
- Executes the
Backup
The Student Has
" Pf(l)lggesctled No One Has Suggested
e Propose i
Aot Before the Action Before
, Tttll? Slgradent %xicu_tes The ;Jtzglg:nfi:: aASks
e Proposed Action Possible Action
The Student Has No
Alternative The Student Has
Alternative
The Companion Evaluates
the Student's
Alternative
Same as the Companicn's
Proposed O In the Unattempted List
PO ne Not in the P
- . Unattempted
i List
It iseti(lfa msna[:n amgn .says ls The Companion Says the
€ Action ' Alternative Looks Good
The Companion §
? SV
The Companion Prefers His

Own Proposed Action

Figure 5 - Protocol of Activity: Companion Deciding while Student

Evanntinm

66 Mathematical Intelligent Learning Environmenis

4.5 Situation Map — a Representation of Problem

Solving Situations

Some protocols of learning activities among the three agents are
defined. These protocols reflect the different learning stages of the
learners in the learning process and appropriately restrict their
possible unbounded interactions. For example, when the learners have
equipped with most techniques, they can then start solving complex
miscellaneous problems. Miscellaneous problems are problems that the
learners cannot expect to have any similar pattern. This is in contrary
with problems that focus on practicing a particular technique (e.g.
substitution), and the problems are usually similar with increasing
complexity. When the learners work on miscellaneous problems, they
have to judge whether or not the current problem situation has
improved by the method. If the situation is improving, what will be
the next method? Otherwise, should the problem be backed up to the
very beginning, or just to the last situation? The protocol at that stage is
one deciding and one executing (Figure 5) where different situations,
including the past stages of solving a problem, are needed to be taken
into account for making decisions to apply which method. Plain facts or
simple data such as a list of alternatives in the blackboard can neither
capture the relations of different situations nor connect the current
situation with the past situations in solving the problem.

Another concern of working on complex problems is the addition of
social context to the current situation, for example, making a comment
like "We are getting close." Such social context is usually situation
specific to a particular problem. Moreover, personal subjective feeling,
speculation, or even inspiration could possibly contribute to such social
texture. Neither encoding such context within the rules of behaviour
which simulate the protocol of activities for a general set of problems
nor using a simple data structure will suffice to represent such
particular knowledge.

Situation map is the representation we attempt to meet the needs
mentioned above. lts data structure is defined as follows:

{defstruct sit
{problem nil}
(sub-problem nil)
number
(visited-time 0}
{paths nil))

" (defstruct path
from
to
(traversed? nil}

Some Techniques in Buikling Mathematical ITSs 67

(defstruct action

type

(proposed-agent 'no-one)
{sub-exp nil)
{3imp-steps nil}
{pre-comment nil)
(post—comment nil))

The structure sit stands for situation. The slot problem is the current
mathematical expression the learners are working on. If the slot sub-
problem is not nil, then it is a sub-expression to focus on instead of the

problem, for example, if -cosx sin2x + 2fcosx cos2xdx is the problem,

then the sub-problem is fcosx cos2xdx. Number is the identity slot for

the sit structure.Visited-time records the number of times that the
situation has been visited. The most important slot is paths. It is a list
of outgoing paths to other situations.

For the structure path, the slots from and fo point to the situations
where the path started from and is going to respectively. Traversed?
records whether the path has been traversed. Action is the actual
action which changes the situation pointed to by the 'from’ slot to the
situation pointed to by the 'to' slot. Each path has an action associated
with it and vice versa.

There are five types of actions for the structure action. The types
substitution and by-parts are two typical actions to transform the
current problem situation by substitution method or by integration by
parts method to another problem situation. The type back-up backs up
the current situation to the one pointed to by the 'to’ slot of the path
which the action is associated with. Another type, problem-done, is
just to notify that the problem is done and the corresponding path
points to the same situation as it started from. The last type of action,
unexpected, is.an interesting action. This action denotes the action the

- student decides to take in the current situation. So the corresponding

path will go to a particular situation which has only one path out with
the action back-up to the previous situation since the unexpected action
will not be a useful one. The proposed-agent is the agent who proposed
the action, initially, no one. If the action type is substitution, the sub-
exp slot will be the substitution expression. For by-parts action, the sub-
exp slot is the list of # and dv expressions. Otherwise, it is nil. At this
stage, we assume that the simplification of mathematical expressions
involved in these two types of actions are well mastered by the student
and the companion, thus it is not treated as a type of action. The simp-
steps slot contains simplified steps of the problem after the action. This
can be viewed as a utility or as a part of the teacher's support. Finally,
the pre-comment and post-comment are some comments made by the
companion and/or the teacher which is the social texture for the action

68 Mathematical Intelligent Learning Environments

Figure 6 is a situation map for the problem Jexsinxdx where the

companion decides and the student executes.

8It0

Problem:
f &sinx dx

By-parts
u=sinx,dv= edx Back-up

By-parts
u = ¢* dv = sinxdx

Sit1 sh2
.) Problem:
u =sinx - | & sinxd: -e'cosx +] ¢ cosxdx
Sub-grobiem:
Je'cosx dx

. By-
u=cosx,dv=ed u=e, dv = cosxdx
problem-done
v Sit4
yP X ‘ Problem:
u=cosx, dv=edx é‘sinx—é‘cosx—

{ &'sinx dx

Figure 6 - A Situation Map Where the Companion Decides

At the beginning, the companion uses integration by parts with u =

sinx and do = e*dx. He finds that there is no improvement. He decides
to back up and try integration by parts with a different u and dv, but it
turns out to be a similar situation as before. Now the teacher interrupts
and asks them to carry on. The companion then tries one of the plausible
actions which is surprisingly reduced to the original problem. The
companion then decides to back up and tries another action which goes
to a situation which is very close to having the problem solved but the
laasmare maw nnf rernonise this. Now the teacher jumps in again and

Some Technigues in Bullding Mathematical ITSs 69

some algebraic manipulation, the problem is solved. The final action
problem-done is to signal to the system that the episode has finished.
The timely interrupts and the final wrap up by the teacher are
necessary in that difficult problem. Notice that when the companion
decides and the student executes, all the paths of the situation map are
traversed because the design of the protocol controls the companion to
only prefer his own choice. On the other hand, we can say that because
of such a companion's character, we do not need to lay out every possible
situation and thus the situation map is not very large.

Sit0
Problem:

I sinx sin2x dx

unexpected
Back-up
Sit-0 '
By-parts
By- . .
u=sinx,dv= sfng‘:; ack-up u = sindx, dv = sinxdx

Sit1 '
Sit2
Problem:
-sin2x cosx + 2J cosx cos2x dx
Sub-problem:
{ cosx cos2x dx

By-Paris

ack-up u = cos2x, dv = cosxdx

By-part Back-up

0 = cosx, dv = cos2xdy] problem-done
Sit-2 :
Sit4
Sh3 Problem:
-sin2x cosx + 2c0s2X sinx +
4f sinx sin2x dx

70 Mathematical intelligent Learning Environments

Another example of the situation map (shown in Figure 7) is the
case where the student decides and the companion executes, the
subsequent problem of the previous one. At the beginning, because of the
previous experience, there are two actions that the companion expects
the student to choose. Any other action, like the substitution method, is
regarded as unexpected. Executing an unexpected action will go to
situation sit 0 which will have to back up. For the other expected
actions, taking integration by parts with u = sinx, dv = sin2x will need

to integrate [sin2x dx which is not that simple and the companion will

ask to back up. If the student decides the right choice, the problem
situation will move to sit 2. Now, the focus is the sub-problem

Jcosxcos2xdx. Again, there is an unexpected action path leading to sit 2.

If the student takes an expected but not useful choice, at some point of
execution, the companion will call for a back up. Finally, with the
suggestion by the companion, the student will make the right choice.

Unlike the previous case where the companion is to decide, only
part of the situation map may be traversed since the student may
decide to take all the right actions and get the answer. Also, in this
case, unexpected paths are needed for the student may try unexpected
actions. We do not need unexpected paths in the previous case just
because of the stubborn character of the companion.

With the use of the situation map, the rules of behaviour for
simulating the protocol can focus on the negotiation process and, in fact,
becomes an interpreter of a situation map. Also, because the situation
map includes particulars of a problem, rules of behaviour for each
problem are significantly simplified.

4.6 Student's Bug Handling
In learning, a student's responses always are sometimes correct or
sometimes buggy. If the student's responses are always correct, then he
does not need to learn; but, if the student's responses are always buggy,
it is doubtful that the system is useful to the student. No matter
whether buggy or correct, the student’s response is either expected or
unexpected to the system and has to be dealt with. Thus, the student's
input can be viewed by the system as either buggy or correct, expected or
unexpected (Figure 8), even though sometimes such a division is not
clear. From Figure 8, the smoothest situation is that the student’s input
is correct and expected. And it is desirable to reduce unexpectancy of the
student's response to the system; in particular, the correct unexpected
student's response.

In Integration-Kid, when the student and the companion interact

intensively such as in learning advanced methods, whether a learner's
e e T mmamnnb o hisnrr o tha ci1hisot of their diceniasion. Thus. not onlv

Some Techniques in Building Mathematical ITSs 71

only is the computer responsible for discovering buggy moves, the
human student is also. However, the partition of Figure 8 is still a
valuable framework to discuss how Integration-Kid handles the
student's errors; for example, typing mistakes may be frequently made
by the student but not the companion.

Correct

Figure 8 - Student Responses Divided by Correctness and System's
Expectancy

A way that the Integration-kid reduces unexpectancy is to limit the
student's input to be one of the choices on a request menu. Any choice by
the student is then expected by the system assuming that the student
understands the meaning of the choices and has clicked the choice he
intended. But still, there are cases where the student regrets his choice
right after he has clicked on a choice.

In the early stages of learning in Integration-Kid, the student's
expected buggy response is modeled as a part of the companion’s
behaviour e.g. applying a buggy rule. In some ITS, like CMU tutors,
expected bugs are modeled by the buggy library. When the student
makes such an error, in addition to the teacher's indication and
explanation, the student can compare his bug with that of the
companion's. Also, there are situations where the student's error is
partially expected by the system, although the system cannot tell or
explain exactly what is wrong. Typing mistakes in writing
mathematical expressions are such an example. In that case, the system
locates the sub-expression that it cannot understand by using the
expression parser. Another example is to use constraint knowledge to
inform the student of his mistake. For example, if the student chooses

the parts ¥ = cosx and dv = e*dx for the problem _[exsinxdx. The system

L | . LN Y - [DUV QU —"

72 Mathematical Intelligent Learning Environments

e*sinxdx . This is helpful information for reminding the student that
his choice is limited under such a constraint. With such information, it
is possible that the student may get the right choice of » and dv (# = Inx

and dv = dx) for a tricky problem, [Inxdx.
It is always possible that a student's response is totally out of

expectation of the system. Learning under a rich social context such as

Integration-Kid, the system can directly tell the student that his
response cannot be understood. This makes sense to the student because,
based on the history of their learning interaction, the computer agents
cannot understand the student's current response. By the same token, we
can expect that the student may understand that the system cannot
understand his response if the system's ability to understand the
student's situation is more or less the same as a teacher's. Thus, it is
perfectly fine in learning with a social context, that the system tells
the student it cannot understand his response whenever it is out of the
system's expectation. However, a student's response that is out of the
system's expectation is not necessarily incorrect. Suppose the expected
correct response is 4, it is not impossible that the student puts down
‘four' or 'TV', an example of unexpected correct student response.

Another way to reduce the unexpectancy is to identify as much as
possible the student's expected correct response by using the domain
knowledge. But there are cases where this is not a very simple job. In
Integration-Kid, when learners are working on simple problems
independently, the student writes down a sequence of mathematical
expressions as his solution, His solution can be long or short for he may
skip steps or even just write down the final answer. The way the
Integration-Kid traces the steps of the student's solution is as follows.
Suppose the first step is the original problem, then the teacher will use
the set of elementary rules to generate a comprehensive sequence of
steps as a solution. Each of these steps and its simplified version is
matched against the student's next step or its simplified version. That
is, the set of all the steps of the teacher's solution and their simplified
version are the potential candidates to match the student's next step. If
the student's next step does not fall into this expectancy, then the
teacher informs the student that he does not understand the step. If the
matching is successful, then the current step will move downwards.
Thus, the current step becomes the second step and the next step will be
the third step. The same mechanism applies again. Finally, if the last
step of the student's correct response still has an integral sign, the
teacher will ask the student to continue; or, if the last step can be
further simplified, the teacher will ask the student to simplify.

In Integration-Kid, the teacher's scaffolding can substantially
reduce the student's errors when applying background knowledge. We
do not model errors in the companion's background knowledge. If the

Some Techniques in Building Mathematical ITSs 73

For the student, any mistake related to the background knowledge is
regarded as a careless mistake and is unexpected to the system. The
teacher would say "don't understand”. Because of the scaffolding by the
teacher and the availability of references of background knowledge,
errors on the parts of a task that involve background knowledge are
minimised.

4.7 Parsing of Mathematical Expressions

In this last session, we discuss a parsing algorithm which transforms a
one dimensional infix expression to a two dimensional expression. For
example, when the student types in (§ (1 / (x * 2)) d x), the system will

echo f Jidx Such algorithms have been developed in some systems such
X

as Mathematica and Macsyma. But unfortunately, they have not been
available in the literature while they are an essence for mathematics
ITS. Of course, some systems may provide a better input environment for
the user and in order to use the technique described in this session, there
may be an additional parsing of the user input expression to the one
required by the algorithm. ‘

The best way to describe the parsing algorithm perhaps is by
demonstrating a rather complex example with the explanation of a list
of parse trees. The input of the example we consider is :

(6 (l(sin ({x - 1) / 3)) + ((x ~ 1) ~ &) / (cos ({(x - 1} /
3 ~E)))dx) + 8 (1 x) {1/ 2))dx)))

The intended output will be an array of strings of the same length
which when arranged as a rectangle will look like :

" X -1 4 i~

" Sip[————-] + (X - 1) -

L1} 3 . 1 2 [1]

[e lax + -1 ax-
X-15 x "

" Cogf[=—m==— 1 "

The main observation is that the output expression will be more
than one line when either there exists a sub-expression which is a
fraction or an index. That is, when a sub-expression involves the symbol
/ or A, The first phase of parsing is to obtain a parse tree from the input
expression. All the largest sub-expressions of the input expression of the
form (?numerator / ?denominator) or (?base * ?power) are matched.

74 Mathematical Intelligent Learning Environments

These sub-expressions are labeled as. nonterminals! / or A respectively.
The rest of the input expression is translated into strings as terminals.
Thus, a sequence of strings and nonterminals is obtained which is the

root node of Figure 9.
uj'[u / «]dx"_.l'[u A u]dxn

A \ / /
/ et nyn n2n

le — 1" ll3|I l'lx — 1" "4" IICOSIII I ll]" “5“ L

/\

le _— 1.! "3"

Figure 8 - Parse Tree of the Infix Expression

"SI /]+ A

Those strings will be on the same line in the final form of the two
dimensional expression. For the nonterminal /, the corresponding sub-
expression is split into two parts, one for the numerator and the other
for the denominator, and, similarly, the nonterminal, #, is split into the
base and the power. Each of the split parts of the sub-expression are
parsed in the same fashion recursively until a parse tree as in Figure 9
is obtained where all the leaf nodes are strings.

After getting the parse tree, the second phase of parsing begins. In
this phase, strings are combined together to form rectangular arrays of
strings in a bottom up manner. First, go down to the smallest left-most
subtree and collect the leaf nodes which are our first focus (the shaded
rectangle of Figure 10). Since their parent is a non-terminal, /,weadda
string of bar characters forming a line to separate the numerator and
the denominator. For the string "3", we add spaces on both sides so that

-1
a rectangle of strings, as shown in Figure 11, representing -)'(3“ is formed.

Now three consecutive rectangles of strings appear on the left bottom of
the tree. These consecutive rectangles of strings are then merged to form

1 Terminal and non-terminal are common terminology used in compiler design, A

- annctanl In m wrnwinkla that otando far

Some Techniques in Building Mathematical ITSs 75

.x-1 —
a larger rectangle, s1n[—3'-]+, as shown in Figure 12. Next to that

rectangle is a non-terminal, /. Again, go down to the smallest left most
subtree of the non-terminal, #, and combine the leaf nodes (the shaded
rectangle of Figure 12) of that subtree in a similar bottom up fashion.
But this time the sub-expression is an index, a rectangle of two strings

representing (x - 1% is formed (Figure 13). Then two consecutive
rectangles appear again and they then merge together to form another
larger rectangle (Figure 14). Continue this way until a final rectangle of
strings is obtained.

uJ'[u lr n]dx + J'[n A u]dxu

"Sinl" / "+ A : A / /

! llx — 1II l‘l4" 'lcos[' I .ll]ll "5“ ”1 L] "xll “1 L] “2”

llx — 1II "3"
Figure 10 « Focus the Leaf Nodes of the Smallest Left-Most Subtree

76

Mathematical Intelligent Learning Environments

" 7 "dx+ I A "o

"Sinl* / "]+" ' "\ / /

llx — 1 " II4I! Ilcos[“ ! Il]ll “5" "1 n llxll "1 n ll2|l

I\

I‘I "3“

Figure 11 - Three Consecutive Rectangles of Strings are Obtained

it 4 dx 4+ A ax®

/

"Sin[" / "J+" A A / /

/

"x — 1“ “4" ﬂcos[ll , II]“ II5H Il1 " llxll. li1 H .l2“

A

ll II3II
Figure 12 - Merge the Three Rectangles and Focus to the Non-leaf

™l A

Some Techniques in Bullding Mathematical ITSs 77

W

"Sin" / "]+" A "\

llx — 1II H4I! "COS[" / l']” "5" II1 " llxll ”1 " |I2Il

AN

ll l|3ll
Figure 13 - Two Rectangles are Obtained Again

uj’[u n]dx_‘_j'[u A u]dxn

-1 "4" "Cos[" / ""

llsin[ﬂ l!] +

x 1 lI n3ll I|5|l Il1 n nxn ll1] ||2||

le — 1“ II3II

Eirmira 14 - Marna nf tha Twn Rantannlas

78 Mathematical Intelligent Learning Environments

In order to merge rectangles correctly, the position of the centre line
for each rectangle of strings is recorded. A rectangle with only one siring
has centre line position 0. A rectangle of a simple fraction of three line
has centre line position 1, that is, the middle line separating the
numerator and the denominator is the centre line. A rectangle of an
index of two lines has centre line position 0, that is, the base is the
centre line. When the rectangles merge, all the centre lines of the
rectangles line up. This line up is achieved by adding space lines above
and/or below some of the rectangles so that all the rectangles have the
same height and the same position in the centre line. All these
rectangles are then put together forming a resultant rectangle with the
centre line updated. Interested reader may request the Lisp code from
the author.

4.8 Conclusion

Tn this paper, we have discussed several critical techniques for building
Integration-Kid, an ITS in the domain of indefinite integration. A
detailed example use of the system is described in (Chan, 1992b).
Integration-Kid has been tested by a small number of individual case
studies for verification and revision of the system, but has not been
fully tested or evaluated. However, we discover that the human
students seem to be very curious about the companion's response and pay
more attention to it than the teacher's. Recently we have implemented
another LCS (distributed version) by rebuilding the WEST program
(Burton & Brown, 1979) for learning binary numbers (Chan et al. ,1992).
But the companion is another human student, not the computer
simulated companion, playing at another connected computer. That is,
two human students are companion to each other, using the system via
two connected computers. The new system is currently used to evaluate
learning effects of ITS environment that are alternative fo on-on-one

tutoring.

5

The anatomy of FITS:
A Mathematic tutor

HYACINTH S. NWANA
Univesity of Keele, U.K.

5.1 Introduction

It seems accurate to remark that most papers on the numerous published
ITSs provide enough information to understand it but not reconstruct it.
To be fair, this has resulted due to the sensible publication restrictions
on length, depth, etc. This has in turn resulted in mainly overviews of
systems being published. However, good and progressive research
requires others being able to understand fully and even reconstruct our
systems so as to be able to evaluate them. Evaluation is still a relative
taboo activity in Al research; it is our belief that if others were able to
reconstruct the systems then more of them could be appraised. It is
currently the case that most systems remain as prototypes which are
rarely evaluated. Since these prototypes also seldom go out of the
laboratories in which they are developed, their research value is
largely lost, unless the researchers continue the work. However, if
enough was published of the system to as to be reconstructable, it is
likely the research value of these systems may be preserved as much
more other researchers may base their future research on what others
have accomplished in theirs. The benefits to be accrued by reporting
more of our systems can not thus be overstated.

This paper follows in Ford's (1987b) example of reporting the
anatomy of his TUTOR system. The key intention is to provide the
knowledgeable reader with enough details to be able to largely
recreate the fractions tutor, FITS.

5.2 Overview of FITS

5.2.1 History

Mathematics has provided a very suitable domain for intelligent

