)
(8

Computers in Human Behavior, Vol. 14, No. 3, pp. 429448, 1998

P ergamon © 1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0747-5632/98/$19.00 + 0.00

PII: S0747-5632(98)00015-6

Designing Computer Support for
Collaborative Visual Learning in the
Domain of Computer Programming

Jihn-Chang J. Jehng

Institute of Human Resource Management,
National Central University,
Republic of China

Tak-Wai Chan

Department of Computer Science and Information
Engineering, National Central University,
Republic of China

Abstract — Collaborative learning of visual information with computers can be
particularly beneficial for acquiring complex and abstract knowledge. This article
describes a computer-supported collaborative visual learning environment called
TurtleGraph that was designed to assist learners in capturing the concept of
recursion as well as recursive programming skills. In this distributed learning
environment, students were requested to collaborate with their partners to write
LISP-LOGO recursive programs in order to solve geometric pattern drawing
problems. The instructional aim of the TurtleGraph collaborative visual learning
environment was to foster active knowledge processes through collaborative work

Requests for reprints should be addressed to Jihn-Chang J. Jehng, Institute of Human
Resource Management, National Central University, Chung-Li, Taiwan, People’s Republic of
China. E-mail: jehng@src.ncu.edu.tw

429

430 Jehng and Chan

that helps learners make their strategic thinking more explicit and induce more
reflective thoughts, and also helps them be more critical in evaluating and
interpreting the adequacy of their knowledge. © 1998 Elsevier Science Ltd. All
rights reserved

Keywords — collaborative, learning, visual information

The use of computers in education has been dominated by a view that the
computer is an ideal medium for individualized instruction because of its
capacity to vary instructional presentations and alter instructional decisions
to satisfy individual requirements. This interest in developing individualized
instruction also parallels a long-term emphasis in learning research involving
issues of individual cognition (e.g., representation, reasoning, and decision
making). Recent research has suggested there are limitations regarding
learning as an individual activity because most of our learning occurs in the
context of social activity (Brown, Collins, & Duguid, 1989; Lave & Wenger,
1991; Resnick, 1991; Rogoff & Lave, 1984). Students usually interact with
their teachers or work with their partners to process knowledge. Therefore,
instructional systems must be designed from the sociocognitive perspective to
enhance learning.

The learning of computer programming is suitable for collaborative work.
This is because collaborative learning or problem solving is mainly used for
pedagogical reasons with the goal of promoting effective learning of difficult
and complex knowledge. Computer programming is a domain containing
complex knowledge and many interwoven concepts that often require an
individual to expend considerable mental effort to understand. In fact, real-
world programming is often collaborative in nature. Nevertheless, exactly
how a computer-based learning environment can be designed and used to
support the learning of programming knowledge through collaboration,
particularly at the initial stage of learning, still remains unclear. This article
describes a research project that has developed a distributed visual learning
environment called TurtleGraph. The system has been demonstrated to be
effective in an introductory computer programming course in assisting
students to develop their programming skills through collaborative work
(Jehng, in press).

THEORETICAL FOUNDATION OF PEER-BASED COLLABORATIVE
LEARNING

The improvement of an individual’s cognitive development and academic
performance associated with peer-based collaboration is well documented

Collaborative visual learning 431

(Johnson & Johnson, 1990). Piagetian sociocognitive conflict theory is
probably the most influential theoretical perspective on the influence of peer-
based interaction. The theory emphasizes the sociocognitive conflict as the
crucial mechanism responsible for the development of individual conceptual
knowledge (Piaget, 1978). Cognitive conflicts arises when there is a perceived
contradiction between the learner’s existing understanding and what the
learner has already experienced (Piaget, 1973). The contradiction and
disequilibrating effect it has on the learner lead the learner to question his
or her beliefs and to try out new ideas. The learner has the potential to actively
construct deeper and more abstract knowledge and develop understanding by
reflecting on his or her own activities and the arguments used in social
interaction.

An alternative to this view is the internalization of social processes as the
mechanism for learning. Cognitive development takes place within the zone of
proximal development where external social interaction plays an influential
role and provides a cognitive scaffold to help shape an individual’s mental
structure (Vygotsky, 1978). The development of individual cognitive skills is
determined through learning under adult guidance or in collaboration with
more capable peers. For example, studies have demonstrated that students’
reading comprehension can be improved when they learn to take turns
coaching each other while reading a text (Palincsar & Brown, 1984). Students
learn not only to control and monitor their own behaviors, but also to develop
more effective learning strategies through reciprocal tutoring, evaluation, and
criticism. Collaborative learning or problem solving provides a collective zone
of proximal development in which learners can cross-fertilize each other’s
knowledge and help move to a higher level of competence in performing tasks
(Scardamalia & Breiter, 1991).

Peer-based collaboration can facilitate the change of individual cognitive
structure and lead to convergence of different knowledge held by the
collaborative partners. In collaboration, the thinking is distributed among
members of the group. The essence of collaboration is convergence—the
construction of shared meanings for conversations, concepts, and experiences
(Roschelle, 1992). Mutual understanding is achieved through an iterative
process of displaying, confirming, rejecting, and repairing the shared
meaning. The iterative interactions lead to the joint use of meanings that
are progressively constrained. This requires individuals to use communication
devices to articulate meaning precisely in relation to each action in a situation.

In sum, peer-based collaborative interaction provides a social context
where higher order cognitive behaviors, such as modeling, scaffolding,
articulating, and reflecting, are encouraged in order to have a productive
learning outcome. Peer-based collaboration can be enhanced if a learning
environment can augment the communication process and induce more
constructive social and intellectual interactions. A collaborative learning

432 Jehng and Chan

environment that provides opportunities of effective social modeling and
scaffolded guidance and can help learners attend, reflect, articulate,
and evaluate what they have learned is an ideal social context for assisting
learners to develop complex cognitive skills.

THE DESIGN OF TURTLEGRAPH LEARNING ACTIVITIES

The design of the TurtleGraph collaborative visual learning environment was
inspired by the ideas addressed in the previous section. The purpose of the
system is to teach the skill of recursive programming. Years of teaching
experience in an introductory computer programming course have shown that
most students fail to transfer their programming skills from procedural to
functional language, such as LISP, in which the program code is mainly
comprised of recursive procedures. The experience suggests to us that if we
wish to teach our students how to write a computer program with recursive
procedures, we ought to be able to tell them what a recursion is in such a way
that it will enable them to discover the definition of recursion on their own.
We have developed a fairly simple language and its interpreter called LISP-
LOGO to make recursive constructs easier to learn. The language was quite
similar to its aborigine, LISP, but with a simpler syntax. The language carried
a few LISP and several basic LOGO graphic commands, such as Forward and
Right. Including LOGO commands into LISP-like codes equipped LISP-
LOGO with a capability of generating graphics so that the language itself can
explicitly represent the recursive structure externally.

Student Tasks in TurtleGraph

The tasks that we designed were collaborative visual learning tasks. While
learning what recursion is in TurtleGraph, students were requested to
collaboratively write LISP-LOGO programs in order to solve geometric
pattern drawing problems. The use of geometric pattern drawing tasks had its
instructional advantages. First, we believed visual learning tasks can make it
more effective to acquire abstract knowledge than using those tasks that are
purely symbolic or text-based. The task itself could reduce the students’
cognitive load by making the knowledge acquisition and interpretation
process more perceptual, rather than textual or syntactic. Processing pictorial
or visual information is easier for most learners than processing abstract
symbolic or verbal information (Ferguson, 1977; Larkin & Simon, 1987).
Second, visual learning tasks can make peer-based collaboration more
effective. Students can quickly and easily receive feedback from visual
information while coinvestigating and coevaluating their collaborative work.

Collaborative visual learning 433

The visual learning tasks also help learners coregulate their collaborative
work in a more efficient way. Arguments among participants in a team can
easily be resolved through visual comparisons than through logical inferences
from purely textually presented syntactic statements.

Finally, the most important advantage of using visual learning tasks is that
geometric patterns can explicitly represent the deep structure of recursive
procedures. In teaching programming of recursive graphic patterns, one is
didactically motivated to approach recursion as a property of the object
produced by the program, not merely as a property of the program itself or of
the execution process that the program itself refers to. In most computer
programming textbooks, the definition of recursion is vaguely referred to as
“a procedure defined in terms of itself”’, and the syntactic definition of a
recursive procedure is referred to as “‘a pattern of process of evolution™.
However, this fails to stress the point that recursion essentially reflects an
execution process that occurs in the computer. To illuminate the deep
structure of the concept of recursion, it is suggested that the learning task
must be designed in such a way that a certain relationship that holds between a
program and a certain manner in which that a program itself can be viewed as
emulating a given object. Therefore, the geometric pattern can be the output
of the program, or even the process of generating that pattern is created by
the program. According to this approach, in thinking about recursion, the
beginning students can start from the programming task.

In each pattern drawing task, students were requested to write programs to
draw a pattern by following a predefined drawing sequence with a fixed
starting and finishing point. For our learning task, the recursive function was
taught, if not defined, as a type of regularity of the structure of an object. In
particular, the recursion may be partially defined as a high level of regularity
that can be attributed to the object by viewing it as an instance of an infinite
sequence of similar objects. The process of visual composition of a pattern can
easily reflect the structure of the corresponding recursive procedure. The tasks
were designed on the basis of three basic forms of recursive construct:
headcall, middlecall, and tail recursion. The classification was based on the
location of the recursive function call inside a recursive procedure as reflected
by the process that a recursive graphic pattern is generated. Figure 1 provides
examples of the three basic recursive constructs associated with their
corresponding geometric patterns.

As Figure 1 shows, the headcall recursive procedure usually includes its
recursive function call at the beginning of the program, while the tail recursion
has its recursive function call at the end of the program. Both recursive
constructs generate the same geometric pattern but with opposite starting and
finishing points. The middlecall recursion usually generates a geometric
pattern with a symmetrical form. Different pattern design tasks can help

434 Jehng and Chan

Tail Recursion Pattern: Whirl
(detun whirl (counter length angle)
(cond
{(/= counter 0)
(rectangle length)
(RT angle)
(whirl (- counter 1) length angle)
)
)
)
Middlecall Recursion Pattern: Symgrowthbar
(defun symgrowthbar (counter length)
(cond
((/= counter 0)
(FD length)
(BK length)

(RT 90)
(FD 10)
(LT 90)
(symgrowthbar (- counter 1) (* length 1.5))
(FD length)

(BK length)
(RT 90)
(FD 10)
(LT 90)
)
)
)
Headcall recursion Pattern: Complexspiral
(defun complexspiral (counter length angle)

(cond
({(/= counter 0)
(complexspiral (- counter 1) (+ length 1) angle)
(FD length) (v)
(RT angle) N
\‘\

)
)
)

Figure 1. Three basic forms of the LISP-LOGO recursive program along with their
associated geometric figures.

students construct, analyze, and structure their own understanding about
recursion. While drawing a geometric pattern, learners must analyze and
tinker with parts of that pattern and construct the definition from its
component pieces. For instance, consider the pattern “Whirl” in Figure 1. It
seems that most people have no trouble recognizing the pattern, as
characterized by certain regularity. When prodded further, they may realize
that what they perceive as a regularity does not conform with their initial and
naive notion. As a rule, when asked for their idea of a regularity, they will
respond with the first-order definition that the pattern is comprised of equally
sized squares at different angles. They then realize that this definition does not
apply to other particular patterns. After some in-depth examination, they may

Collaborative visual learning 435

recognize that the regularity of the pattern is based on a recurrence of a
method, more than on a recurrence of a part. Let us call this type of regularity,
which is based on a repetition of a method of generating the whole pattern,
a second-order regularity. Instead of just the definition of recursion as “a
procedure defined in terms of itself”’, learners will have a more concrete idea
about recursion and the recursive process that generates a pattern. For
example, the pattern “Whirl” in Figure 1 can be characterized as an infinite
sequence that (a) represents a recurrence of a fixed method for the
construction of the pattern, (b) is monotonically changing, and (c) reveals
differences between all successive elements containing a first-order regularity.
Such interpretation can also be applied to the pattern “Symgrowthbar” and
the pattern “Complexspiral” in Figure 1. Figure 2 shows a step-by-step
growing process of the pattern “Whirl” as a sequence of equally sized squares
of successive generation.

THE INSTRUCTIONAL PRINCIPLES OF THE TURTLEGRAPH
LEARNING ENVIRONMENT

From our teaching experience, we speculate that our students do not lack
competence to learn but have not had sufficient opportunities to apply their
knowledge and utilize their monitoring and reflecting skills in developing
their computer programming knowledge. We also found that learners have
difficulty meshing their monitoring skills with their executive procedures.
Thus, TurtleGraph provides a collaborative problem-solving context in which
our learners can apply their knowledge and develop a self-monitoring ability
through both individual interactions with the system and the influence of peer
interaction. The design of the TurtleGraph collaborative learning environ-
ment featured three instructional principles.

Reflective Learning Principle

Researchers have argued that the computer can be used as a tool for learners
to observe their own learning (Collins & Brown, 1988; Dillenbourg, 1992).

L]

Figure 2. The growing process of the figure “Whirl"’ as a sequence of squares of
successive generation.

436 Jehng and Chan

Making learning observable means showing learners some representation of
how and what they have learned. Owing to the constraint of the capacity
of human memory, learners can not memorize all the actions they have made
in the process of learning. However, the computer can help learners keep track
of how they have behaved and allow them to examine, analyze, compare, and
reflect on their prior actions.

An underlying technique employed in TurtleGraph is to present some trace
of each individual learner’s initiated actions and of the environment’s
responses. The system has the capability of keeping track of learners’
conversations and displaying these conversations on the screen. This is
intended to help learners observe and monitor their learning behaviors at any
time while working with the system. As Figure 3 shows, all collaborative
partners’ conversations can be recorded and displayed chronologically inside
the Dialogue Recorder. Those dialogues explicitly represent the entire
problem-solving process. Learners can utilize their conversations to
(a) understand their interactions and evaluate the problem-solving history,
(b) reflect on their problem-solving approaches, (c) organize their conversa-
tional actions, and (d) develop novel problem-solving strategies by comparing
previously developed ideas.

As Figure 4 shows, learners using TurtleGraph can also see and compare
their own programming code with their partner’s by pressing the Partner’s
Editor button and opening their partner’s Program Editor window at any
point. Through comparison, learners cannot only quickly locate faults and
weaknesses in their own problem-solving approaches, but can also modify
and improve their problem-solving strategies at critical points. Learning
through reflection by comparison can help learners elaborate on what has
been learned and make the entire learning process more meaningful.

Reactive Learning Principle

The TurtleGraph learning environment was designed in such a way that is
sensitive to learners’ actions or responses and provides immediate feedback
that will extend learners’ understanding of their own actions in a context of
specific learning situations. In the situated learning model, learning is
accomplished through tuning of attention and perception in relation to each
action made by learners. According to the model, perception rather than
memory is addressed as the means by which we learn. Meaning is not retrieved
from previous representation or schema stored in the memory, but is
generated on the spot through perceiving and acting. Knowledge is always a
novel construction that continues to develop in every interaction that learners
make in their environments (Clancey, 1994). To make learning be more

437

Collaborative visual learning

‘Juswuouiaud Buiajos-wajqosd ydeigapun) ¢ einbiy

N\ N\wuku | 7/ 7 wnvs wiessi o
EETIEL

{8

mopui
AL

. j (¢
oY b1y | el L] p ([(10000 -) preagaced)
(ARt _y)

¥
ia18ue QAL (] 22auten | [Intmes proapacid)
(06 23}
. {uBue (a)
[2denmoo =3 puod)
ip pm -) gu
TfUZ [Buct Ao |ieitiod) piyagiscd ur jey)

Eva%y

*
&
]

a6,
Rl Br B804

¢ wadord Lu podna nak sy
YW EE
Jay 1 Adusy

“RL0EG% uopesiu

S -NURUG;)
o { W YORSITIAN UED MOAD TUSP |

1e0y04 62 03

\
o
L4

N { VBRSNS WRD UL LA 3EmMaY 3O

@

dpH

000

WU WUANAUT] FUIA]OF WIGOIT SARRIOGR]JO))
A ydeioyapunyg,

MOopUi A 19p1033Y [oued
squny anojerg jonuo)

Jehng and Chan

438

"J031p3 s duled 8yl b aunbiy

MQ*#—

m =
X0 Ny

PR R W wAadkaE)

o

Sk 02 ~ 3 Fyagians

B urL

&

(K
\
(a1 (b1 vaust L) b 11 Taenmd <) yamacid
(rivw ._.M_v
J(o17us pSug (1 ZAent -) (BENOC BP0l
C 6 I
C A
10 2@aurss -7) pucs
(C g s =) puos,
{efre yp3ue] Tieymat [IsEmMa:) [T ARANT INO)

By &

i TR | il

u X

?.wnﬂﬁaau.&_n

(o1 19y
i
[(SFEN]
=)
e
AR
ouol)
() 440)pi0d ur}ad)
L. JLUANUUY adY L sLy]
PJe ‘C2 PIBMUIO JLRYY Z=X 1 70 dd3a D) ury))=k L

BEATY PR FF

AdoD

s LAY 0400 A0 (GO

E¥T

juswuonAug SUIAJOS WI[qOId dA1IRIOqR{[0D)
ydeinopuny,

103pg
s Jomreq

Collaborative visual learning 439

perceptual, TurtleGraph employs a learning environment that emphasizes
dynamic problem representations shown in an external display that is reactive
to each action made by learners (Dugdale, 1994; Larkin, 1988). As Figure 3
shows, learners can immediately observe the process of how a geometric
pattern was generated while its corresponding recursive program is being
executed. Learners can evaluate the accuracy of their programs with
corresponding graphical patterns by tracing the movement of the turtle and
analyzing the angle with each turn made by the turtle. The dynamic external
display is so reactive to learners’ problem-solving behaviors that it can help
students explicitly envision the state of their knowledge and help them closely
monitor, analyze, and modify their knowledge.

Structured Learning Principle

A variety of representative pattern drawing tasks were presented in
TurtleGraph with different levels of complexity and difficulty. Each problem
starts with a story and learners are assumed to play the role of computer
graphic designers to design a geometric pattern. The system incorporates the
concept of scaffolding in order to guide learners in the use of recursive
procedures to solve the problems. As Figure 5 shows, learners are also allowed
to access and utilize relevant example programs to solve the problem. The
example programs are provided in a manner that is specific to certain design
tasks.

Just as an effective teacher pays close attention to the learner’s current level
of ability and gives them a task that builds on their prior learning (Johnson,
Flesher, Jehng, & Ferej, 1993), TurtleGraph sequences learning experiences
based on each individual learner’s prior problem-solving performance. The
presentation of the task is based on the complexity and difficulty of the
recursive constructs. At the initial stage, learners are requested to write a
simple tail recursion to simulate a one-layer loop to draw a pattern, such as
the “polygon”, whose geometric structure can be easily recognized and
analyzed (Figure 6a). At a later stage, a much more complex design task, such
as the “binary-tree” pattern, is presented with which learners must utilize
more complex recursive programming routines to draw the figure (Figure 6b).
Each time students accomplish a task, the system keeps updating their
performance records based on the teacher’s evaluation and makes a decision
concerning the difficulty of next task that learners will work on. Learners
must demonstrate a certain level of problem-solving skill before advancing to
more sophisticated problems. Learning by practicing knowledge with
different problem-solving tasks can help learners consolidate their acquired
knowledge and gain deep understanding of how the knowledge can be used in
a wide variety of problem contexts.

Jehng and Chan

440

‘wdysAs ay) Aq pepiaosd sweibBoid ajdwex3 'g a.nbig

BWHNARE W

YR EF T e I

] {{os ™)
(1:=)
5.4 fx)
= (0: =)
] PoD)
(1) wmogpuo> urgep)
uxq...,m_kL 01 PRADRQ L0 A
H P& O PRy
WA =130 PRAIGWAT [= 1
SR al ERNSY Y
ERIC
{
(|
{tor) | i m
DL
osw) |
(1:=))
otm)
A (o= |
T 03 :
ANt sz wuoydoof |
A ~ 01 prong7vq 19p0 o3 | 7 A0 P 3
p : Y ¢ ety "
, 1o TP [t)] EwIp TR [! mewxm

Ho:&.o.gzm mﬂio,w E.u_BSnH 3ATRIOGE[O))

sure1301g
ajdurex

ydeinamng,

Collaborative visual learning 441

a. Geometric pattern of “polygon™ b. Geometric pattern of “binary tree”

Figure 6. Example of geometric patterns.

Button-Oriented Interface for Effective Collaborative Interactions

In addition to the three instructional principles, as a distributed learning
environment where students share the teamwork at different locations,
TurtleGraph provides communication facilities that allow learners to
synchronously communicate and exchange their ideas. The design of the
communication interface applies and extends the notion of button control
theory (Jona, Menachem, Bell, & Birnbaum, 1991; Schank & Jona, 1991).
Advocators of button control theory propose that students, in a computer-
based learning environment, should have significant control over what they
see, hear, and learn through the “button”. Rather than using natural language
processing, which is difficult to implement, each message corresponds to one
button, represented either textually or iconically on the computer screen.
TurtleGraph provides a button-oriented communication interface to help
students monitor their conversations and control their conversation
behaviors. Each time learners press a button initiating a conversation, that
button will immediately highlight their partners’ previous messages and
prompt them to elaborate their ideas to respond to these messages in order to
form a coherent conversational interaction (Figure 7). These buttons are
designed to assist problem solvers to carefully develop their thoughts and
regulate their problem-solving behaviors during collaborative interaction.
This, in turn, may help organize ideas and promote more effective and
efficient interaction.

THE FUNCTIONALITY OF THE TURTLEGRAPH LEARNING
ENVIRONMENT

The system operates on Macintosh computers connected to one another via
AppleTalk. A short lesson is provided at the beginning to help students
familiarize themselves with the LISP-LOGO language. After finishing the

442 Jehng and Chan

Partner's
Previous
message

TurtleGraph
Collaborative Problem Solving Envi

5 LWtk

fuen g v hw! it

MATHEROE

Of course, just do it.

‘L AXWH

igovthed $4.:047)

metrn groscthwhivl insir-er! oo imm =)
ord (0~ ~omesT) N
o (= oundcr: 0
FDle: a0y
T9H
(creythvhul cowter. (- cou\TEFz (1.eng 3 g
t

T =ngin)
)(gr:mhvh‘ﬂi coumizr) 109 (" lzngth | 414 anze’

DI
Ceronwa kA 4 u | Aupn BB B

Figure 7. The conversation boxes appear by pressing the Communication button.

tutorial, students will read a story in which they are asked to play the role of a
computer graphic designer who needs to choose an on-line partner to form
a collaborative team to complete a geometric pattern drawing task. They are
then brought into the TurtleGraph Collaborative Problem-Solving Environ-
ment to work on the problem as shown in Figure 3.

The environment contains five main functional areas: the Control Panel,
the Turtle Window, the Dialogue Recorder, the Program Editor, and the Talk
Window. The Control Panel, located on the left side of the screen, contains six
buttons. The Help button includes specific instructions that guide students to
use the system. The instructions provided are context-sensitive. Learners can
click on the Help button at any time to request assistance from the system.
Next to the Help button is the Problem button. Each time students click on
the Problem button, the system provides a detailed explanation about the
task. The system first demonstrates how a geometric pattern is generated and
then requests learners to draw exactly the same pattern by following exactly

Collaborative visual learning 443

the same drawing steps with the same starting and finishing point. The
Example button contains example programs for reference. The presented
examples vary specifically in response to each design task. Information
provided by the Example button can help students organize their knowledge
and develop more effective problem-solving strategies (Schank, Linn, &
Clancey, 1990). Students are allowed to copy the example programs into their
Program Editor, or execute them to see how they work and perhaps adapt
those program codes for their own purpose. By clicking on the Communica-
tion button, students can write text information to exchange and discuss ideas
with their partners. A conversation box appears on the screen with their
partners’ messages highlighted so that they are able to know how to respond.
By clicking on the Judge button, the system will automatically send students’
solutions to the server. The teacher evaluates students’ solutions at the server
side to decide how successfully they have accomplished the task, adds points
into the their grade books, and provides feedback. Each time a student
accomplishes a task the system will maintain a record of his or her
performance in the database and update his or her performance history.
Therefore, the next time students enters the system, the system will
automatically evaluate their previous level of performance and give them
appropriate tasks for further learning (Johnson et al., 1993). Students can
choose to leave the system through the Exit button at any point.

The Dialogue Recorder, which is next to the Control Panel, keeps track of
students’ conversations chronologically during each learning session.
Students can read and reflect on their own conversations while working on
the problem. A turtle is symbolically represented by a dark solid triangle that
moves in response to the execution of the LISP-LOGO commands. A pattern
is simultaneously generated along the course of its movement. Students can
visually evaluate their programs with the corresponding patterns just
generated. The Turtle Window and Dialogue Recorder provides an
environment where students can closely examine and analyze the state of
their knowledge.

The Program Editor is located on the bottom of the computer screen.
Students write their LISP-LOGO programs inside the editor window. Editing
functions such as copying, cutting, and pasting are all available through
shortcut keys. The Save button is used for saving the current program and the
Load button is used for retrieving a previously written program. Students
must compile the program before it is executed by pressing the Evaluate
button. Students can either examine or make a duplicate copy of their
partners’ programs for their own use by opening their partners’ Program
Editor through the Partner’s Editor button. Another deliberate design of the
system is the Co-Exe button. Students can click on the Co-Exe button to
execute their programs and the patterns that their programs have just
generated will simultaneously appear inside both their and their partners’

444 Jehng and Chan

Turtle Window. The design of the Partner’s Editor and Co-Exe button helps
students collaborate to work on ideas effectively. Beside the Program Editor is
the Talk Window where a compiled program can be executed. Next to the
Talk window are Speed Box and Angle Box. Students can control the speed
of the turtle by pressing either the “up arrow” or ‘“down arrow” button inside
the Speed Box and can also check the degree of the angle with each turn made
by the turtle through the Angle Box. The purpose of the Speed and Angle
Boxes is to help students to generate, examine, and analyze their programs.

The entire system represents a self-contained collaborative visual learning
environment with rich resources available for students to explore and
communicate. The instructional materials and learning facilities provided by
the system are closely akin to each other and function as one so that students
can seek closure and feel a sense of control of their learning behaviors.

EVALUATING COLLABORATIVE LEARNING IN TURTLEGRAPH

TurtleGraph has been used in an introductory computer programming
course which was offered to assist social science students to learn
recursive programming. A study has been conducted in this introductory
computer programming course to compare whether students learning
recursive programming in collaboration with their remote partners could
develop better programming skills than those who either collaborate to learn
in a face-to-face context or learn individually.

Subjects

A total of 94 social science students who did not receive any computer
programming training participated in this course. In the first half of
the semester, these students were taught to write simple LOGO and
SCHEME programs. They were then divided into high-achievement,
medium-achievement, and low-achievement clusters based on their perfor-
mance on the mid-term test. The high-achievement cluster was comprised of
students whose test performances were in the top 33.3% (n=31), the medium-
achievement was comprised of students whose test performance were in the
middle 33.3% (n=32), and the low-achievement was comprised of students
whose test performances were in the bottom 33.3% (n=31) of the class.

Procedures

During the experiment, all students were organized to learn recursive
programming in the TurtleGraph learning environment. At the beginning,

Collaborative visual learning 445

all students took a 2-hr session to learn LISP-LOGO and the basic recursive
programming concept. They were then randomly selected from the three
achievement clusters and assigned into three learning conditions: distributed
collaborative (n=36), face-to-face collaborative (n=36), and individual
learning (n=22). Students in each of the two collaborative learning conditions
were then arranged into 6 high—medium, 6 high—low, and 6 medium—low
collaborative pairs. All the students in the three learning conditions were
asked to learn to write LISP-LOGO recursive programs to solve four
geometric figure drawing tasks at four different learning sessions each of
which lasted 1 hr.

Transfer Measures

At the end of the four learning sessions, all students were required to take a
test individually. The test contained three debugging, three prediction, three
fill-in-blank, and one programming test items. The debugging and prediction
test items were designed as multiple-choice questions primarily measuring
students’ program evaluation ability. The fill-in-blank test was to measure
program completion, and the programming test was to measure program
generation ability.

Data Analysis and Results

Table 1 shows the results of student performances in the posttest. Students in
the three learning conditions performed equally well on the program
evaluation and program completion test. Nevertheless, students who learned
the recursive programming in collaboration with others in TurtleGraph,
either in a distributed or face-to-face collaborative context, developed much

Table 1. Student Performances on the Posttest

Type of programming Distributed Face-to-face Individual x?
skill test leamning learning learning

(n=33)* (n=236) (n=18)2
Program evaluation 75.8%° 78.7% 75.9% 1.04
Program completion 68.7%° 63.0% 66.7% 0.26
Program generation 36.4%° 44.4% 16.7% 32.89*

®Three students in the distributed leaming and four students in the individual
learning group did not show up to take the posttest so their performances on the
Eosttest were not counted.

All percents listed in rows of program evaluation and completion tests indicate
proportions of test items correctly solved by students.

CAll percents listed in the row of program generation test indicate proportions of
students in each leaming group who solved the problem successfully.

*p < .05.

446 Jehng and Chan

better program generation skills than those who learned recursive program-
ming individually, x>=32.89, p < .05. Students in the distributed learning
context expressed that they were motivated to use the system and felt that the
collaborative visual learning really helped them efficiently capture the concept
of recursion and acquire recursive programming skills. Based on the results,
we believe that sound instructional design is important to make a
collaborative visual learning environment educationally effective.

DISCUSSION

Contemporary educational theory increasingly values collaborative learning
and group work. Constructive social and intellectual interactions between
learners are important in teaching methods in order to produce significant
learning. It is generally recognized that significant learning is likely to occur
when learners actively participate in building their own knowledge and share
the results of their learning experience with others (Resnick, 1991). Modern
computer technology can be applied to support and mediate such an
interactive process and make it more constructive and productive.

TurtleGraph is a distributed learning environment that utilizes the
capability of computer technology to help students acquire recursive
programming skills and improve their understanding of the concept of
recursion through collaborative visual learning tasks. The use of visual
learning tasks is to make the learning process more visible and explorable to
the students. Novice learners usually have difficulty in becoming active
learners to process their knowledge, since they are not able to envision the
state of their knowledge and do not know where and how to detect deficits in
their knowledge. Visual learning can resolve such limitations. The geometric
pattern drawing tasks, provided by TurtleGraph, explicitly represent crucial
characteristics of the concept of recursion and make it easier to learn.
Students can immediately know how they have performed on the tasks and get
meaningful feedback from the visual information. The dynamic external
display can help students be more active in examining, analyzing, and
evaluating their knowledge.

Different from the conventional notion regarding learning where becoming
expert in a domain requires gradual reception and internalization of already
created knowledge and procedures, TurtleGraph provides learning activities
that leave extensive latitude for learners to explore their own understanding
about recursion. The visual learning tasks become an adventure of exploring,
designing, and implementing what learners try to develop in an activity. The
first-hand experience replaces conventional second-order learning which
involves being aware of the context of behaving and working ways of doing
things that are usually taken for granted (Dugdale, 1994).

Collaborative visual learning 447

The visual learning tasks provided by TurtleGraph are accomplished by
students through collaborative work. The system is designed to play an active
role of agent that mediates interactive learning. TurtleGraph utilizes
advanced computer network technology to form a distributed learning
environment that allows members of the collaborative team to work at
different locations and reduces the social inequality problem that usually
occurs in the traditional face-to-face situation (Kiesler, Siegel, & Mcguire,
1984; Ruberg, Moore, & Taylor, 1996). Facilities provided by the system, such
as scaffolded guidance and examples, are also changeable in the course of time
to support learning. The modifiable instructional support is a requirement for
TurtleGraph to sustain the learning activities in which joint adventure of
knowledge is encouraged.

Acknowledgments — The research project was funded by the National Science Council,
Taiwan, under contract no. NSC82-0111-5-032-005, to the first author of this article. This
project was executed under the group project entitled LISA with social learning as the main
research focus. The goal of the LISA project was to establish various multi-channel learning
environments, where students engaged in learning activities by interacting with various agents
who may be actual human learners or computer-simulated agents. The authors are grateful to
Steven Liang and Yu-Fen Shih for their assistance and constructive ideas in getting started on
developing the system, and are also grateful to Scott D. Johnson and Michael Jacobson for
their valuable comments on the early draft of this article.

REFERENCES

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.
Educational Researcher, 18, 32-42.

Clancey, W. J. (1994). Situated cognition: How representations are created and given
meaning. In R. Lewis & P. Mendelson (Eds.), Lessons from learning, IFIP Transactions
A-46 (pp. 231-242). Amsterdam: North-Holland.

Collins, A., & Brown, J. S. (1988). The computer as a tool for learning through reflection. In
H. Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring systems (pp. 1 -18).
Berlin: Springer-Verlag.

Dillenbourg, P. (1992). The computer as a constructorium: Tools for observing one’s own
learning. In R. Moyse & M. Elsom-Cook (Eds.), Knowledge negotiation (pp. 185-198).
London: Academic Press.

Dugdale, A. (1994). Using students’ mathematical inventiveness as a foundation for software
design: Toward a tempered constructivism. Educational Technology: Research and
Development, 42, 57-73.

Ferguson, E. S. (1977). The mind’s eye: Nonverbal thought in technology. Science, 197(4306),
827-836.

Jehng, J. C. (in press). The psycho-social processes and cognitive effects of peer-based
collaborative interactions with computers. Journal of Educational Computing Research.
Johnson, S. D., Flesher, J. W, Jehng, J. C., & Ferej, A. (1993). Enhancing electrical
troubleshooting skills in a computer-coached practice environment. Interactive Learning

Environment, 3, 199-214.

Johnson, D. W, & Johnson, R. T. (1990). Cooperative learning and achievement. In S. Sharan

(Ed.), Cooperative learning (pp. 23—37). New York: Pracger.

448 Jehng and Chan

Jona, Menachem, Bell, B., & Birnbaum (1991). Button theory: A taxonomic framework for
student — teacher interaction in computer-based learning environments (Technical report No.
12). Evanston, IL: Northwestern University, The Institute for the Learning Science.

Kiesler, S., Siegel, J., & Mcguire, T. W. (1984). Social psychological aspects of computer-
mediated communication. American Psychologist, 39, 1123 -1134.

Larkin, J. H. (1988). Display-based problem solving. In D. Klahr & Kotovsky (Ed.), Complex
information processing: The impact of Hebert A. Simon (pp. 1 -39). Hillsdale, NJ: Erlbaum.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11, 65-99.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.
Cambridge: Cambridge University Press.

Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and
comprehension-monitoring activities. Cognition and Instruction, 1, 117-175.

Piaget, J. (1973). To understand is to invent: The future of education. New York: Grossman.

Piaget, J. (1978). Success and understanding. London: Routledge & Kegan Paul.

Resnick, L. B. (1991). Shared cognition: Thinking as social practice. In L. B. Resnick, J. M.
Levine & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 1-20).
Washington, DC: American Psychological Association.

Rogoff, B., & Lave, J. (1984). Everyday cognition: Its development in social context.
Cambridge, MA: Harvard University Press.

Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. The Journal of
Learning Science, 2, 235-276.

Ruberg, L. F., Moore, D. M., & Taylor, C. D. (1996). Student participation, interaction, and
regulation in a computer-mediated communication environment: A qualitative study.
Journal of Educational Computing Research, 14, 243 —-268.

Scardamalia, M., & Breiter, C. (1991). High level of agency for children in knowledge
building: A challenge for the design of new knowledge media. The Journal of Learning
Science, 1, 37—-68.

Schank, R., & Jona, M. Y. (1991). Empowering the student: New perspectives on the design of
teaching systems. The Journal of Learning Science, 1, 7-35.

Schank, P., Linn, M., & Clancey, M. (1990). How does an on-line template library help students
learn PASCAL? Paper presented at the 1990 Annual Meeting of the American Educational
Research Association, Boston.

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes.
Cambridge, MA: Harvard University Press. (Original work published in 1935)

