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Chapter 7

A VISUALIZATION MAP THAT AIDS IN
DETECTING ACTIVATED REGIONS IN FMRI

Mu-Chun Su”", Jiang-Shing Jiang’, Daisy Lan Hung’
and Tak-Wai Chan’

"Department of Computer Science & Information Engineering,
National Central University, Taiwan, R.O.C.
*Graduate Institute of Network Learning Technology,
National Central University, Taiwan, R.O.C.
}Graduate Institute of Cognitive Neuroscience, National Central University,
Taiwan, R.0.C. '

Abstract

A visualization map called V map that can aid in the detection of activated regions in
functional magnetic resonance imaging (fMRI) is proposed. The motivation of the V map was
attributed to the use of the self-organizing feature map (SOM) as a data clustering tool. Via
the visual examination of the map, the user can easily identify activated regions in the fMRI.
The proposed visualization map fully utilizes the property of the spatial connectivity of
activated pixels, which is an important factor in determining the significance of activated
regions in fMRI. The advantage of this technique is that regions of activation can be identified
in fMRI without the need of a priori knowledge of expected hgmodynamic responses. One
artificial data set and one real life data set are used to demonstrate the applicability of the
technique. .

Keyword: fMRI, self-organizing feature map, clustering algorithm, segmentation, medical
imaging '
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a powerful tool for monitoring regional
hemodynamic change following neuronal activations in the brain with high spatial resolution
[1]. In a typical fMRI experiment, blocks of baseline and aciivation images are scanned
periodically while the subject is at the “baseline” (e.g., rest) condition and when the subject is
performing a specified cognitive or motor task. Two main problems make the detection of
activated regions in fMRI difficult: (1) the noisy characteristic of the fMRI data and (2) the
variability of the hemodynamic response. Many different approaches have been proposed to
analyze fMRI data. These approaches can be dichotomized into two different classes: (1)
model-driven approaches and (2) data-driven approaches. The most popular model-driven
approaches are the t-test technique and the cerrelation coefficient analysis (CCA). These two
methods share the same disadvantage that we must know the shape and delay of the activation
signal (or model function) in advance. Without the a priori knowledge, they are incapable to
identify activated regions in fMRI. :

In more recent years, data-driven approaches have begun to be employed in analyzing
fMRI data [2]-[16]. These approaches do not assess whether the data contain a model
function. Popular data-driven approaches include the independent component analysis (ICA)
technique and clustering-algorithm-based methods. The ICA technique is a blind source
separation method that does not require knowledge of the expected hemodynamic response to
detect activated regions in fMRI. It is a method of factoring measured signals info a set of
signals that are statistically independent by using a feedforward neural network to estimate
the independent components in the data [17]. The crucial problems associated with the ICA.
technique are the lack of criteria for determining the physiclogic importance of each
component and the incomplete development and optimization of the method for clinical use.
As for the clustering-algorithm-based methods, they group image pixels together based on the
similarity of their intensity profile in time (ie., their time courses) independently of their
spatial distribution. Each cluster can be represented by an average time course and output
maps can be produced by labeling pixels that belong to the same cluster. Basically, the
performance of these methods is greatly dependent on the following factors: (1) the distance
measure and (2) the number of clusters. In addition, since most of them cluster pixels
independently of their spatial distribution, pixels belonging to the same cluster may be scatted
over the image. Therefore, activated regions detected by these clustering-algorithm-based
methods are then usually disconnected. This phenomenon contradicts the property of the
spatial connectivity which is an important factor in determining the significance of activated
regions in fMRI.

In fact, the detection of activated regions in fMRI could also be regarded as a
segmentation problem in which the goal is to divide the fMRI data into consistent parts or
objects. Hundreds of segmentation techniques have been described in textbooks and other
literature. For example, summaries of the techniques can be found in {18]-[20]. Instead of
adopting the viewpoint of segmentation to detect activated regions in fMRY, in this study, we
propose a visualization map (V map) to analyze fMRI data. Via the proposed V map,
activated regions can be visually identified without the need of a priori knowledge of
expected hemodynamic responses. The V map can be regarded as 2 new data-driven approach
to analyze fMR] data.

A Visualization Map that Aids in Detecting Activated Regions in fMRI i85

The remaining of the paper is organized as follows. In section 2, we briefly review the
background of fMRI data and two widely used analysis techniques. Then the description of
the proposed V map is given in section 3. The experimental results are given in section 4.
Finally, section 5 concludes the paper.

2. Background

2.1. fMRI Data

Functional magnetic resonance imaging (fMRI) allows assessments of brain activities via
local hemodynamic variations over time. In a typical fMRI experiment external stimuli are
presented at intervals of several seconds. During an fMRI experiment, images of the brain are
acquired while the subject alternates between performing a designed cognitive or motor task
and being at rest. Fig. 1 illustrates a typical imaging scenario. The brain is sliced into several
(e.g., Ny) slices with a slice thickness of several (e.g., L) mm and a slice gap of another
several (e.g., Lgqp) mm, as shown in Fig. 2. That is, a complete brain results in N; images.
After the experiment, a comiplete scan of the whole experiment will produce Nrimages per
slice. Therefore, the time course of a pixel at a slice is consisting of Ny time-point long time-
series, as shown in Fig. 3. i
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Figure 1. A typical fMRI imaging scenario.

N; Slices
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Figure 2. A complete brain is consisted of Ny slices (images).
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Localized signal differences between the resting and activation period are used to reveal
the localized neuronal activation associated with the task. The detection of the fMRI response
is not a trivial process, because the activation-induced signal changes has a magnitude and
time delay determined by an imperfectly understood transfer function of the brain. This
transfer function may be characterized by variables dspendent on the brain activity and
variables independent of brain activity.

2.2. Analyzing Methods

The goal of analyzing fMRI is io detect activated pixels at each slice. Pixels at a slice can be
divided into two classes: (1) activated pixels and (2) non-activated pixels. While activated
pixels contain pixel time coutse (or time series) that are related to the stimulus, pixels with no
activity correlated to the stimulus are declared to be non-activated pixels. The time series
corresponding to non-activated pixels are considered to be background activity.

Currently, the most widely used methods for analyzing fMRI data are based on explicit,
priori knowledge regarding the activation time course. The ¢-test technique [21]-[23] and the
correlation coefficient analysis (CCA) [24}-{27] are two of the most popular techniques.

The t-test assumes that each fMRI time series corresponds to the realization of an
identically independent stochastic process and divides the data into two groups, obtained
during on (post-stimulus) and off (pre-stimulus) periods. A f statistic is calculated by
computing the difference of the sample means of each group normalized by the pooled
standard deviation. Then activated pixels are detected by using different values of ¢ as a
threshold. The assumption of the #-tesi is that the measured time-series at each pixel consists
of a known activation signal in Gaussian white noise. However, this assumption is not always
true in real cases.

matching \
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Figure 4. Different matching approaches. (a) the window-based matching in the conventional
cotrelation-based algorithm. (b) the time-course-based matching in the CCA.

In the image segmentation literature, matching is one of the basic approaches to
segmentation that it can be used to search specific patterns, to locate known objects in an
image, etc. Basically, the idea of correlation-based matching and the CCA, one of the most
popular model-based analysis tools in fMRY, share the same idea of the use of matching to
search for specific patterns. The major difference between them is as follows. While the
conventional correlation-based matching is based on evaluating a match criterion for each
location and rotation of a reference pattern in an image, the CCA is based on calculating the
correlation between an assumed form of fMRI response (i.e., a boxcar or on/off reference
activation signal) and the measured time-series of a pixel in a slice. Fig. 4 can be used to
illustrate this kind of difference. After the correlation coefficients have been calculated they
are used as a threshold to distinguish between activated pixels and non-activated pixels.
Those pixels that show high correlations are declared to be activated pixels. The CCA is
successful with simple block-design paradigms in which the neuronal response is assumed to
be on/off and the hemodynamic response is known. The main drawback of the CCA is that
the correlation coefficients depend on the shape of the reference activation signal (i.e., the
hemodynamic respanse), which is actually unknown. Although a simple boxcar function is
usually taken as a reference activation signal, the actual functional response does not
resemble a boxcar function and usually differs by subjects, tasks, activated regions, ages, etc.
An inaccurate assignment of the reference function usually leads to an incorrect result. In
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addition, if differential temporal responses are expected, the performance of the CCA may
forther degrade.

In more recent years, data-driven approaches have begun to be employed in analyzing
fMR] data [2]-[16]. The clustering-algorithm-based approaches play an important role in the
data-driven approaches. Clustering algorithms are one of the basic tools for exploring the
underlying structure of a given data set. It has been playing an important role in solving many
problems such as biclogy, medicine, society, psychology, pattern recognition, and image
processing. The primary objective of cluster analysis is to partition 2 given data set of
multidimensional vectors (patterns) into so-called homogeneous clusters such that patterns
within a cluster are more similar to each other than patterns belonging to different clusters.
While it is easy to consider the idea of a data cluster on a rather informal basis, it is very
difficult to give a formal and universal definition of a cluster. In order to mathematically
identify clusters in data, it is usually necessary to first define a measure of distance that will
establish a rule for assigning patterns to the domain of a particular cluster center. As it is to be
expected, the distance measure is very problem dependent. Different distance measures result
in different types of clusters (e.g., compact hyper-spheres, compact hyper-ellipsoids, lines,
shells, etc). Cluster secking is very experiment-oriented in the sense that clustering algorithms
that can deal with all situations are not yet available. Extensive and good overview of
clustering algorithms can be found in the literature [281-[32]. There are two major difficulties
encountered in clustering data: (1) the presence of large variability in cluster geometric
shapes and (2) the number of clusters not always being known a priori.

The aim of the clustering-algorithm-based fMRI analyzing approaches is to find a group
of pixels that share a similar time course. Therefore, each cluster cotresponds to a type of
similar activations. The cluster centers are then representative of the types of activations.
Subsequently, each pixel can be labeled on the image according to the clustering information.
It is then possible to further analyze regions with similar types of activations. Three popular
clustering algorithms such as the k-means algorithm [2], [14], fuzzy c-means algorithm [3]-
[4], {61, and the self-organizing feature map (SOM) algorithm [9], [11], have been proposed
to analyze fMRI data. Due to the high noise level in fMRI data, the clustering results are
usually unsatisfactory if the Euclidean distance measure based on the raw time courses is
employed. Another problem associated with the k-means algorithm incorporated with the
Euclidean distance measure is that the resulting clusters tend to be well-separated hyper-
spherical clusters of the same size. The number of activated pixels is usually much smaller
than the number of non-activated pixels; therefore, if we use the k-means algorithm with k=2
to cluster {MRI data then it is expected that the activated pixels will be definitely submerged
by one of the two large clusters. The two activations corresponding to the two cluster centers
won’t be correlated to the stimulus patterns. For most of those clustering-algorithm-based
approaches usually up to 20 clusters are used. Then all clusters have to be further verified to
find whether these clusters can be really categorized as functional activation, acquisition
artifact, or just noise.

To improve the clustering results, Golay et al. [33] and Toft et al. [34] proposed to
employ a metric based on the correlation between stimulus and time course. However, the use
of the stimulus information in calculating the correlations seems to contradict the original
goal of the data-driven approach. While the distance metric plays an important role in the
clustering results another crucial problem associated with clustering algorithms is the
determination of the number of clusters. When the pre-specified number of clusters does not

A Visualization Map tiat Aids in Détecting Activated Regicns in IMRI 189

match the real number of clusters existing in the underlying structure of the data, the
clustering result reveals little information and even may end up being totally meaningless. To
circumvent the problem, Goutte et al. ‘developed a hierarchical clustering algorithm referred
to as the group-average agglomerative method [12]. Another possible solution is to use the
SOM algorithm by starting with a sufficient number of nodes. Each node corresponds to a
small cluster. Owing io the topology-preserving characteristic which is unavailable in most
other clustering algorithis, so-called “superclusters” can be formed by merging neighboring
clusters on the SOM map.

In fact, no matter which aforementioned clustering algorithm is employed to cluster fMRI
data, it is still possible for pizels belonging to the same cluster to be scattered in the image.
As we know, activated pixels should have a tendency of clumping together; therefore, some
kinds of post-processing procedures have to be carried out to delete isolated pixels or small-
sized connected regions in order to improve the overall performance of detecting activated
regions. Recently, some researchers have utilized the property of pixel connectivity into
clustering procedures to-analyze MRI data sets [35]-[37].

The most crucial problem associated with the clustering-algorithm- -based approaches is
the lack of criteria for determining which cluster really corresponds to activated regions. The
otiginal goal of the clustering-algorithm-based approaches is to detect activated regions
without a prior knowledge of expected hemodynamic responses. 1f we still need to use the
information about the activation paradigm then the original goal is not reached.
Unfortunately, these clustering-algorithm-based approaches failed to provide us with a
convincing solution to this problem because they either need the information of the stimulus
to select the cluster which has the most similar temporal characteristics as the stimulus or they
must assume the activated regions exist in which area of the brain so they can identify which
cluster corresponds to the activated regions.

3. Method

Based on the aforementioned discussions, we find that these data-driven approaches, to a
certain extent, still need the stimulus information. In this study, we propose a visualization
map called V map for the detection of activated regions in {MRI. This new analysis tool is
really without the use of a priori knowledge of the activation paradigm. The only assumption
of the new analysis tool is that activated pixels have a tendency of clumping together. This
assumption is physiologically acceptable since the activaied regions will be in the spatial
vicinity of the neural population concerned with the accomplished fask.

The motivation of the V map was attributed to the U-matrix method [38] and the
nonlinear projection methods proposed by Kraaijveld et al. [3%] and Mao and Jain [40].
These methods are visualization tools fo visualize high-dimensional data as a two-
dimensional image. These tools share a similar idea. For these tools, the self-organizing
feature map {SOM) algorithm [41]-[42] is first used to frain a two-dimensional neural
network. Then the trained network is to be displayed as an image, whereby every node in
the network corresponds to a pixel in the image. The gray value of each pixel is
determined by the maximum distance in the feature space of the corresponding node to its
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immediate eight neighbors in the network. The larger the distance, the lighter the gray
value is. Thus, clusters can be visualized as darker regions with lighter borders.

The original goal of the SOM algorithm is to simultaneously cluster the data set and
project those high-dimensional data ontc a two-dimensional network structure in a
topologically preserving way. In our V map technique, we omit the use of the SOM
algorithm. The reasons are twofold. From our viewpoint, an MR image is already a
topologically preserved map since activated pixels will clump together on the image.
Therefore, we do not need to employ a nonlinear projection algorithm such as the SOM
algorithm to carry out the topologically-preserving projection task. In addition, although
the SOM algorithm is claimed tc have the topology-preserving characteristic there is no
guarantee that a topologically preserved map can be always produced at the end of the
training procedure. Therefore, if we expect that we can use the clustering result achieved
by the SOM algorithm to produce a topologically preserved labeled map which will then
be used to identify the activated regions this expectation may be unrealistic. Based on the
twofold considerations we decide to directly process the image and regard each pixel as a
separate small cluster.

T_he whole procedure of generating a V map from a set of fMR images collected from an
experiment is presenied as follows:

Step 1. Pre-Processing:

First, pixels outside the brain are excluded from the analysis by eliminating those pixels
on an fMR image that have signal intensities below a- pre-specified threshold. Then the linear
!aaseline drift is removed by use of a regression procedure. In addition, each pixel time course
is normalized individually by subtracting its mean and dividing by the variance to be with
Zero mean and unit variance.

Step 2. Transforming:

For each one of the Ny slices a new image with the same size, which is called a V map,
will be generated. Every pixel in the slice has a one-to-one relation to the pixel at the same
loca‘Eion in the V map. The gray value of each pixel in the V map is determined by the
maximum (or average) correlation coefficient between the corresponding pixel and its eight
immediate neighbors in the slice. The larger the maximum or average correlation coefficient,
the darker the gray value is. Therefore, darker regions surround by lighter borders in the V
map ate candidates of activated regions because pixels within the same darker region have
similar temporal characteristics corresponding to the accomplished task.

The corrélation coefficient between pixels i and j can be computed in either the time-
domain space or the frequency-domain space.

Time-domain space

S G = 223 — 1)

ce, (i, J) = ——"= e 1 (1
G =) P (e = )T
n=l n=1

o
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where X, = (X;, > Xy, )" is the pixel time course for pixel i in the slice, Ny denotes the
1 &

number of scans, and (=N—me) represents the average value of the pixel time
T n=l

course for pixel i.

Frequency-domain space

Ny
S =t W= 1))

e, (i, J) = Ny = 1 A, 1 @
[3.(f =t VP S~ 6T

where i = [fus s S ; ]T is an N-dimensional vector consisting of the Ny samples of the

magnitude of the Fourier transform of the fime course, x;, for pixel i, and

Ny
lu!.f (= ]—3——2 Jfin) represents the average value of the vecior i . In the process of Fourier
fon=l
transform the phase information is lost; however, the essential information on the temporal
response of the pixe! can still be revealed from the magnitude of the Fourier transform.
Basically, the correlation coefficient computed in either the time-domain space ot the
frequency-domain space can be used to highlight the activated regions. However, we have
tended to prefer computing the coefficients in the frequency-domain space because many
experimental results demonstrated that the frequency-domain space allowed us with much
ease to identify activated regions on the V maps than the time-domain space did. The reason
why these two kinds of computations have different performance may be due to the following
factors. A common artifact in MRI is a linear drift of the signal with respect to time, which
seems to be resulted from the subject’s slighi motion during the scanning procedure. Assume
that two neighboring pixels have exactly the same shaped time courses but with different time
lags. The correlation coefficient between these two pixels is not equal to one any more if it is
computed in the time-domain space. Moreover, the fMRI data is usually with noise, the
correlation coefficient may be further reduced. The use of the magnitude of the Fourier
transform provides ys with the ability of being insensitive to time lags because we do not use
the phase information in the calculations of the coefficients.

Step 3. Segmenting:

By viewing the map the anialyst can detect where the dark regions are located on the V
map; however, the precise scopes of the activated regions have to be identified somehow. The
scope of a candidate activated region can be determined in either a manual way or an
automatic way. In the manual way, one has to move the cursor to point to a candidate pixel to
decide whether this pixel should be considered as an activated pixel by comparing its-
corresponding time course {or the magnitude of the Fourier transform) with the time course
(or the magnitude of the Fourjer transform) of the nearest darkest pixel. Otherwise, we may
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use a thresholding technique to antomatically segment the activated regions from the V map.
The segmentation task can be easily accomplished if the histogram of the V map presents two
obvious peaks; otherwise, correct threshold selection is usually crucial for successful
threshold segmentation. Since the histogram of a V map usually is not bi-modal we need to
adopt an auxiliary method to segment the V map. First, the pixels with cc values smaller than

6., are discarded and the range of the gray values of the remaining pixels will then be

stretched to be of the range from 0 to 255. Then the threshold selection method proposed by
Rider and Calvard [43] is used to determine the optimal threshold to segment the V map into
activated regions and non-activated regions. This method assumes that regions of two main
gray-levels are present in the image; however, it still works well even if the image histogram
is not bi-modal. This method involves four steps and it is iterative, four to ten iterations
usually being sufficient. First of all, we assume that the four comers of the image contain
background pixels only and the remainder contains object pixels. Second, at time t, compute

,u; and ,u(l) as the mean background and object gray-level, respectively and set

T" = (up + p3,)/2 as the threshold value. Third, use the threshold value T to segment the

image to provide an updated background-object distinction. Fourth, if there is no significant
difference between the updated threshold and the old threshold then halt; otherwise, return to

step 2. The value of the parameter &, is determined by the analyst via a scrollbar. To further

eliminate some isolated pixels, smooth the contours of connected regions, and eliminate thin
protrusions, a morphological operator (e.g., the opening operator) is employed to process the
segmented map.

Since good results could be achieved via the automatic way we suggest using the
automatic way first. The manual way won’t be chosen unless the automatic way camnot
achieve reasonable results.

4. Results

To. provide a comparison with the proposed V map, we performed the two model-based
methods, the t-test technique and the correlation coefficient analysis (CCA), on the same data
sets. This included an arfificial data set and a real life IMRI data set. The boxcar reference
waveform was used in the model-based methods.

For the artificial data set, to assess the performance of each method, receiver operating
characteristics (ROC) curves were constructed. The sensitivity or called as true positive ratio
(TPR) and the specificity are determined for each step and plotted against the other to
generate the ROC curve. For a given threshold the sensitivity is the fraction of all active
pixels that actually are classified as active, and the specificity is the proportion of the non-
active pixels that are correctly classified as non-active. The false positive ratio (FPR), the
fraction of all non-active pixels that are falsely classified as active, equals one minus the
specificity. The area under the ROC curve can be used as a measure of the detection
performance of a method. The closer the area is to one, the higher the detection accuracy.

To plot the ROC curve for both model- based methods, we varied the threshold of CCA
from cc = 0.10, 0.15,.. ., to 0.50, and the threshold of t-test from t value = 0.5, 1.0,..., t0 4.0.

For our proposed method, we varied the value of &, from &, =-0.089, -0.049,..., 10 0.071.

4.1. Artificial Data Set

We first used the simulated data set generated by Dimitriadou et al. [44] for quantitative
performance assessment. This data set is available at hzfp: /www. ci. tuwien. ac.at/research/
oenb/oenb_ data.html. 1t is composed of a time series (35 instances) of a transversal brain slice
(128x128 pixels) with a time invariant texture of 4809 pixels (gray/white matter, ventricles)
and three regions of activation, two small regions and one large region, (49 pixels, see Figure
5(a)). The signal intensity increases during “activation” in a box-car-like pattern {5 instances 7
off, 5 on, etc). In all activated pixels the related signal increase upon activation was 6%, 5%,
and 4% with 3% baseline Gaussian noise of zero mean value added. It resulted in three
simulated FMRI data sets with functional CNR {contrast-to-noise ratio) of 2.0, 1.66, and 1.33

respectively.

)
# #
© ' @

Figure 5. The V maps for the artificial data set. (a) The image in the artificial set. {b) The initial V map.
(c) The stretched V map with &,, = 0.031 . (d) The stretched V map with 6. =0.071
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Here we use Fig. 5(b)-5(d) to illustrate how the V map can be used to detect the regions
of activation. Fig. 5(b) shows the initial V map found by executing the transforming step of
the method. One can identify the darkest regions by carefully viewing the initial map. To help
the analyst locate the most possible activation regions with ease, two maps whose contrasts
have been stretched to the range from 0 to 255 using two different values of &_ are shown in

Fig. 5(c) and 5(d), respectively. By viewing either one of these two figures one may easily
identify the activation regions. This example demonstrates that the V map can detect regions
of activation without a priori knowledge of expected functional response.

CNR=1.33 CNR=1.66
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Figure 6. The ROC curve under CNR = (2) 1.33.(b) 1.66. and (c) 2.0.

The ROC analysis of the artificial data set is shown in Fig. 6. While the sensitivities or
TPRs of the two model-based methods were superior to the V map when the value of CNR
was low, the sensitivities of these three methods reached nearly the same level when CNR =
2.0. By further examining the curves, we may find although the sensitivity reached by the V
map decreased as the value of CNR decreased, FPR (i.e., 1 — specificity) was very low and
almost fixed. This observation reveals that the V map could correctly identify locations of the
activated regions but could not correctly estimate their precise sizes. Figure 7 shows the
activation regions and the averaged time-course waveform in the activation regions identified
by the V map, the CCA, and the t-test under CNR = 1.33 (Fig. 7(2)) and 2.0 (Fig. 7(b)). By
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viewing Fig. 7(a) we find that the largest activation region was detected by all these three
methods. While the V map miss-detected the two small activated regions, the CCA, and the -
test still were able to correcily identify the two small regions. These three methods all
misclassified some non-activated pixels as activated pixels. The t-test achieved the lowest
FPR and the V map had the highest FPR. On the contrary, Fig. 7(b) shows that the V map
achieved the lowest FPR among the three methods. In addition, all three activation regions
were correctly identified by these methods.
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Figure 7. The activation regions and the averaged time-course waveform in the activation regions
identified by the V map, the CCA, and t-test under (2} CNR = 1.33 and (b) CNR = 2.0.
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4.2. Real Life Data Set

One healthy subject was asked to conduct the following experiment. The subject was asked to
alternatively do a visual task and a motor task with total 8 repeated cycles of visual-motor
states. Each state consisted of 10 images for each task. For the motor task, the subject was
asked to do a rhythmic motion of making a fist and opening with her eyes gazing at the
crisscross point shown on the sereen. For the visual task, binocular black-and-white
checkerboard stimulation was given to the subject at a frequency of 8FHz. The subject did
nothing but gazed at the center of checkerboard. This black-and-white checkerboard image
was presented with a PC and projected via a LCD projector (Toshiba TY-G3, Japan) outside
the shielded room on a screen. The subjects saw the checkerboard image via a homemade
reflection mirror.

Imaging was performed on a 3.0-T MedSpec 8300 system with a quadrature head coil.
The fMRI data were acquired with a T2*-weighted gradient-echo EPI using BOLD contrast

(TR/TE/8 = 2000ms/50ms/ 90°, slice thickness = 5mm, inter-slice interval = Imm, FOV =

25Umm, matrix size =64 x 64, slice number = 20, and whole brain covered). For each slice,
80 images were acquired.

T T V14155 A6 M T

nt.

V map t-test

Figure 8. The activated regions on the visual cortex.

For the experiment, activated regions detected by the V map, (8, =0.115 for the 7th

stice and 8, =-0.268 for the 16th slice), CCA (p<0.001, cotresponding CC>0.358), and‘t-

tes.t (p<Q.OOl, two tailed, ‘corresponding t-value>3.21) are shown in Fig. 8 (sliée 7) and Fig. 9
(slice 16).. Basically, all these three methods could successfully identify the activated regions
on the visual cortex, (Fig. 8) and primary motor cortex (Fig. 9). Since the ground truth is
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however unknown it is difficult to make any numerical comparisons regarding the detection
performance. However, we still can find that CCA and the t-test did erroneously identify
many unrelated pixels. After further examining Fig. 8 and Fig. 9 we find that activated
regions detected by CCA and t-test were activated by at least two kinds of signal sources. The
large activated regions were due to the actual experimental paradigm and some detected
regions were outside the visual cortex or the motor cortex (a possible location of cortical
venous vessels). On the contrary, the V map performed very well on the detection of activated
region in the visual cortex. One thing should be mentioned is that the V map detected three
activated regions in the 16th slice shown in Fig.9. Two regions were on the primary motor
cortex and the smallest one was near the motor cortex. The frequency analysis of this region
indicates it contained two peaks. One peak corresponded to two times of the frequency
component of the actual experimental paradigm and the other one corresponded to one half of
the frequency component of the actual experimental paradigm. The physical basis for this
observation is not well understood. It deserves to be further inspected.

V map

Figure 9. The activated regions on the primary motor cortex.

5. Discussions

In order to investigate the role played by the window size we used a larger window size
(e.g.,5%5 window size) to re-run the two data sets. The results are shown in Fig. 10.
Apparently, both window sizes, 3x3 and 5x5, could detect the same activation regions
whose sizes are large enough. For the case of the artificial data set in CNR = 1.33, we find
that the two small untruly activation regions, shown in Fig. 7(a), were not miss-detected by
the 35X 5 window size. For the activation regions detected in the primary motor cortex we
find that the small region on the right bottom corner of Fig. 9 was not declared to be activated
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by the 5x35 window size. Based on these observations, some remarks can be made. First,
large window size won’t increase the false positive ratio. Second, large window size may
decrease the frue positive ratio if activation regions are not large enough. It is due to the fact
that the average correlations within a large window size will be decrease if only a small
fraction of pixels within the large window size are truly correlated with each other. This
results in the decrease of the discrimination between activated regions and non-activated

_ regions. Therefore, a large window size may decrease the false positive ratio at the price of
being unable to detect small activation regibns.

the visual cortex

the primary motor cortex
)

Figure 10. The activation regions by the V map using a 5 X 5 window size under (a) the artificial data
set and (b) real life data set.

From the limited experimental results conducted on one artificial data set and one real life
data set, we found that model-based methods could achieve more acceptable performance
(e.g., higher sensitivity) than the V map did even when the noise level was high. This
observation is not surprising because model-based methiods fully utilize the information of the
functional response model but the V map doesn’t use any a priori information. Although the
V map is not able to estimate the precise sizes of the activated regions it can correctly find the
locations of the activated regions even though the noise level is high. In addition, the V map

ey
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may find some “interesting” regions within which pixels have similar reaction patterns even if
these reaction pattemns are not similar to the functional response pattern. These regions found
by the V map deserve to be further inspected by experts to reveal unexpected information
from them. "

6. Conclusion

In this paper, the V map technique has been presented and validated. The only assumption for
the V map is that in general not a single pixel will be activated by a specified cognitive or
motor task, rather groups of tens to hundreds of pixels. It presents several originalities with
respect to several conveaticnal analysis methods. The performance of the V map is
demonstrated by the simulation results on an artificial data set and a real life data set.
Compared to model-based methods, our V map can efficiently detect regions of activation in
fMRI without a priori knowledge of expected hemodynamic responses. Compared with
current clustering-algorithm-based methods, the V map offers several appealing properties: 1)
the processing time involved with clustering algorithms is no longer needed; 2) the
determination of the optimal cluster number is not a problem any more; and 3) the order of
data and the random initialization of the cluster centers are not a problem any more. In fact,
many researchers had pointed out that most clustering approaches make assumptions about
cluster shape and size so that the algorithms might artificially induce a geometrical structure
that deviates from the real structure of the data. Then this might result in misinterpretations of
the analysis results [11], [44]-[46]. Fortunately, the V map does not have such a problem. In
addition, the V map is capable of detecting regions within which pixels have similar
activation patterns that may be different to the real model function. If these un-expected

_ activation regions can be further inspected more information may ‘be revealed.

The method does have its limitations. If the activation region is very small and/or the
noise level is very high then our method may fail. In addition, the V map cannot predict the
precise sizes of the activated regions though it can point out the right locations. Finally, no
matter which analysis method (of course including the V map), the region declared to be
activated still needs to be further inspected and confirmed by the corresponding experts based
on the knowledge of the stimulus paradigm.
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Abstract

This chapter presents a novel algorithm for the field programmable gate array (FPGA)
realization of the competitive learning (CL) algorithm with k-winners-take-all activation. The
k winning neurons for updating are those best matching the input vector in the wavelet domain
with partial distance search (PDS). In most applications, the PDS is adopted as a software
approach for attaining moderate codeword search acceleration. In this chapter, a novel PDS
algorithm well-suited for hardware realization is proposed. The algorithm employs subspace
search, finite precision calculation and multiple-coefficient accumulation techniques for the
effective reduction of the area complexity and computation latency. A novel sorting
architecture is also proposed for identifying the ¥ winning neurons after the PDS process.

The proposed implementation has been adopted as a custom logic block in the arithmetic
logic unit (ALU) of the softcore NIOS processor. The custom instructions are also-derived for
accessing the custom logic block. The CPU time of the NIOS processor executing the PDS
program with the custom instructions for A-winners-take-all CL training is measured.

. Experiment results show that the CPU time is lower than that of Pentium IV processors
executing the PDS programs without the support of custom hardware.

1. Introduction

Data clustering is useful in several exploratory pattern analysis, grouping, decision making
and  machine learning situations, including data mining, document retrieval, pattern
classification, image segmentation and data compression. In artificial neural networks
(ANNs)[Haykin, 1998],. clustering is commonly realized by competitive learning (CL)
techniques [Grossberg, 1987; Kohonen, 1990], where the neurons of the network compete




